
pISSN: 2523-5729; eISSN: 2523-5739 JICTRA 2018 19

Open Access
Fu l l Leng th Ar t i c le

Randomized Dynamic Quantum CPU Scheduling Algorithm

Rabia Riaz1, Sobia Hassan Kazmi2, Zaki Hassan Kazmi3, Saeed Arif Shah4

1,2,3,4 Department of CS & IT, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan

A B S T R A C T

Scheduling plays an essential role in multitasking, multiprocessing and real time operating systems. The major objective

of scheduling is to enhance system performance. Various preemptive and non-preemptive scheduling techniques have

been developed; however, often contradictory results have left designer skeptical about the efficacy of techniques and

there exists no clear consensus about robustness of these scheduling technique. Round robin is considered as most

widely adopted algorithm having advantages that include fairness and simplicity, but constant time quantum may result

in worst turnaround time and waiting time. In this research work, a new CPU scheduling algorithm, Randomized

Dynamic Quantum (RDQ), based on round robin scheduling has been proposed that is based on the idea of using

randomly generated dynamic time quantum. Simulation results indicate that RDQ improves turnaround time and waiting

time as compared to existing schemes.

.Keywords: CPU scheduling, optimization, round robin, dynamic quantum

Author`s Contribution
1,2,3,4,Manuscript writing, Data analysis,
interpretation, Conception, synthesis,
planning of research, Interpretation and
discussion, Data Collection

Address of Correspondence
Rabia Riaz
Email: rabiaiqbal18@gmail.com

Article info.

Received: Feb 9, 2018
Accepted: Dec 11, 2018
Published: Dec 30, 2018

Cite this article: Riaz R, Kazmi SH, Kazmi ZH, Shah SA. Randomized Dynamic Quantum
CUP Scheduling Algorithm. J. Inf. commun. technol. robot. appl.2018; 9(2):19-27

Funding Source: Nil
Conflict of Interest: Nil

Scheduling plays an integral role in order to optimize

performance of CPU in handling different tasks given by

the user. System where single processor is active can

only run one process at a time; other processes wait for

allocation of the processor until the active process

finishes its execution. The goal of multiprogramming is to

maximize the utilization of processor by keeping it busy all

the time in executing some processes. The scheduling is

an important function of the operating system that makes

possibility of resource sharing. All the system resources

are scheduled before its utilization. CPU is considered as

primary resource of computer, thus in the operating

system design its scheduling plays an important role in

increasing the performance of the system.

1. CPU Scheduling Levels

The CPU scheduling is broken down into three

separate phases:

Long Term Scheduler

Long term scheduler is also known as job or

admission scheduler. Its purpose is to identify the job or

process that will be allowed to compete for the resources

of the system. The main objective of the admission

scheduler is to allocate appropriate job to mid-term

scheduler. It is not invoked frequently but it control the

multiprogramming degree. It may be passive on certain

systems like time sharing systems. Its purpose is to do

ORIGINAL ARTICLE

INTRODUCTION

pISSN: 2523-5729; eISSN: 2523-5739 JICTRA 2018 20

careful selection of CPU bound as well as I/O bound

processes.

Medium Term Scheduler

It is also called swapper because it is part of a

swapping function. The medium-term or intermediate

scheduler removes job that is in main memory storage

area and places it in secondary memory like disk, or else

removes job from disk and places back to main memory.

This procedure commonly called swapping in of process

and swapping out of process. It is commonly present in

time-sharing systems.

Short Term Scheduler

It is also known as CPU scheduler. It is a short-term

scheduler decision to assign the CPU to any one of the

processes for execution. At this level the scheduling goes

through by dispatcher that allows the specific process to

acquire CPU for further execution. The CPU scheduler is

invoked frequently. It should be fast. It dissipates certain

time slice of processor during scheduling process.

Whenever any event like calls regarding to operating

system, clock interrupts and I/O interrupts takes place, it

preempts the current process in block state.

2. CPU Scheduling Criteria

The CPU scheduling algorithms can be compared on

the basis of different criterion and this can lead to

determine the best among several algorithms. CPU

Consumption: All the time CPU must be busy in doing

some sort of useful work. It is the percentage of the time

that the CPU is busy in executing a process or job. The

CPU utilization should be maximized.

Throughput: It refers to the total number of processes

completed in a unit time. The amount of work done by the

CPU should be maximized.

Turnaround Time: It is the total estimated time between

process compliance and its completion by the system. It

should be minimized.

Response Time: As compare to turnaround time the

response time is the estimated time from the request

submission unless the initial response is generated. It

should be minimized.

Waiting Time: It refers to the total time that a process

spent in waiting state in the ready queue. It should be

minimized.

3. CPU Scheduling Algorithms

CPU scheduling is a technique used for allocation of

processor to the processes in a strategical manner

according to particular criteria. Different techniques are

used to select the process to which CPU control is given

[1]-[5]. CPU scheduling purpose is to maximize CPU

utilization. In order to maximize CPU utilization one

process should be running on CPU all the time. To

achieve this level of accuracy we have different

scheduling techniques. The four well known CPU

scheduling algorithms are discussed in this section. Table

1 explains the symbols used in algorithms.

Table 1. Symbols Description used in Algorithms

Description Symbol

Process i P[i]

Total Number of active Processes N

Burst Time of Process i BT [i]

Waiting time of Process i WT [i]

Turn Around Time TAT

Remaining Burst Time Rem_ BT

sQuantum QtmT

Average Waiting Time Avg WT

Average Turnaround Time Avg TAT

First-Come First-Served (FCFS) Scheduling

It is one of the simplest techniques. In FCFS a

process whose request comes first in queue gets the

control of CPU. FCFS algorithm is non-preemptive. The

process holds the CPU until its execution completes or

waits of I/O events. It could easily be implemented by

using First In First out (FIFO) queue. When a process

finishes its execution the processor is taken away and

allotted to next ready process in the queue [6]. It is not

appropriated for time sharing systems [7]. In FCFS

technique process which has long burst time will execute

first. Then, next process with longest burst time will be

fetched. Process with smaller burst time will have to wait

until process with long burst time completes its execution.

This situation is called convoy effect. FCFS is not used

now a day because its performance is not good. It gives

bad performance, lower throughput, lower average time

and much longer turnaround time. Scheme is explained in

Algorithm 1.

ALGORITHM 1 FCFS Scheduling

1 Input the processes along with their burst time (BT);

2 Waiting time (WT) for all processes;

i. As first process that comes need not to wait so

pISSN: 2523-5729; eISSN: 2523-5739 JICTRA 2018 21

waiting time for process 1 will be 0 i.e. WT[1] = 0;

ii. Waiting time for all other processes can be

calculated

P[i] waiting time WT [i]= BT [i-1]+ WT [i-1];

2 Turnaround time, TAT = BT+ WT for all processes;

3
Average waiting time =

;

4
Average turnaround time

= ;

Shortest Job First (SJF) Scheduling

The technique in which the job with shortest burst

time is executed first and then so on, but if two or more

jobs have same burst time then FCFS technique is used

in that scenario. SJF technique could be either one

preemptive or non-preemptive. The choice is made when

at the ready queue the new process is arrived while the

prior process is running preemptive, it is called shortest

time remaining first (STRF) [7] [8]. SJF scheduling is

optimal in most scenarios because it has minimum

average waiting time and minimum average turnaround

time [9]. But in SJF there is an overhead of starvation for

the jobs with higher burst time [10]. Scheme is explained

in Algorithm 2.

ALGORITHM 2 SJF Scheduling

1. Sort all the processes in increasing order according to

burst time;

2. Then simply, apply FCFS;

Round Robin (RR) Scheduling

It is most widely used technique in operating systems

and is specially designed for time sharing systems [7]. A

small amount of time is associated with each job called

time quantum or time slice. All ready processes are

placed in queue. The scheduler allots CPU to the initial

process which is at the head of queue for specific time

quantum and new coming processes are added at tail

with similar time quantum associated. Here two situations

could occur:

 If process has completed its execution before ending of

it time slice it will release the CPU and then CPU is

allocated to next job which is at the head of ready

queue.

 If the CPU burst of executing process is higher than

time quantum then processor is forcefully taken away

from that process and allocated to next selected

process. The preempted process is added at the tail

(end) of the queue, this procedure is called context

switching.

The performance of RR technique depends on the

quantum size [6] [11]. If time quantum is too short then

due, to a lot of context switching efficiency of CPU

decreases. But if time quantum is too long it causes poor

response time and estimates FCFS [12]. Turnaround time

of round robin algorithm also depends upon time

quantum. In RR algorithm average waiting time is high.

Scheme is explained in Algorithm 3.

ALGORITHM 3 RR Scheduling

1

Create an array Rem_BT [] to keep track of

remaining burst time of processes.

Rem_ BT[i]=BT[i];

2

Create another array WT [] to store waiting times

of processes. Initialize this array as

WT[i]=0;

3 Initialize time: t = 0;

4 While all processes are not done {

 For each process i do following {

 If Rem_ BT[i] >QtmT

 t = t + QtmT

 Rem_ BT[i] = Rem_ BT[i] - QtmT;

 Else

 t = t + Rem_ BT[i];

 WT[i]= t - BT[i];

 Rem_ BT[i] = 0;

 Decrement N;}}

5 Compute turnaround time: TAT[i] = WT[i] + BT[i];

Priority Scheduling

In this technique, priority is associated with each

process that is utilized to allocate the control of processor

[10]. Process with highest priority will get CPU control first

and after that next process with highest priority will take

control. When two processes come with similar priority

then FCFS technique is implemented.

Priority scheduling could be defined as preemptive or

non-preemptive. In preemptive priority process

scheduling, a process is currently executing and another

process comes with higher priority than CPU is taken

forcefully from executing process and given to higher

pISSN: 2523-5729; eISSN: 2523-5739 JICTRA 2018 22

priority process. While in non-preemptive priority

scheduling executing process is not preempted until or

unless it completes its execution. The main problem that

occurs with priority scheduling algorithm is indefinite

blocking or starvation when lower priority process has to

wait longer for their execution. This problem could be

resolved by a technique called aging. Scheme is

explained in Algorithm 4.

ALGORITHM 4 Priority Scheduling

1 First input the processes with their burst time and

priority;

2 Sort the processes, burst time and priority according to

the priority;

3 Now simply apply FCFS algorithm;

In this paper, is organized in following sequence. In

Section 1, the basic concept and the importance of CPU

scheduling are discussed. It has been tried to explore all

attribute of scheduling to help further researchers for

more creativity in this field. In Section 2, different

concepts and methodologies of previous round robin

scheduling algorithms are discussed. Moreover the loop

holes in previous algorithms have also been identified,

which becomes base for new developed algorithm. In

Section 3, the methodological details of proposed

algorithm are discussed. In Section 4 on the basis of

simulation and generated results the performance of new

developed algorithm is compared with the performance of

some existing scheduling algorithms. At the end of the

paper, the summary and recommendations are presented

in Section 5.

The round robin CPU scheduling technique is widely

used in most operating system, even with its overhead

due to static predefined time quantum [7]. In order to fill

this gap the researchers have developed various

techniques; few of them are discussed in this section.

Burst Round Robin as a Proportional-share

Scheduling Algorithm

Helmy and Dekdouk [13] proposed a different

weighting scheme for existing round robin algorithm. The

proposed scheme is an effort to combine overhead of low

scheduling in round robin and favor smaller processes.

Large quantum means that the process have associated

higher weights; more time will be given to smaller jobs so

they will be removed earlier from the ready queue.

Self-Adjustment Round Robin (SARR) Algorithm

Matarneh [11] proposed an algorithm that is based on

the idea that an optimum time quantum value can be

calculated by considering the median parameter of the

burst times of waiting processes present in the ready

queue, only if this median value is not more than 25ms. In

such situation the time quantum value must be readjusted

to 25ms in order to reduce CPU overhead due to high

context switching time.

Shortest Remaining Burst Round Robin (SRBRR)

Scheduling Algorithm

Mohanty et al [14] proposed an algorithm that is the

combination of shortest job first and round robin

algorithms. It gives better results as compare to existing

round robin algorithm.

Priority Based Dynamic Round Robin (PBDRR)

Algorithm

Mohanty et al [15] proposed another algorithm in

order to make better performance of scheduling

algorithms. The proposed algorithm is designed by

integrating the existing priority based technique and round

robin technique.

Weighted mean Priority Based Scheduling

Algorithm

Behera [16] proposed a new process scheduling

algorithm that is based on the idea of dynamic time

quantum and weighted mean.

Modified mean-Deviation Round Robin (MMDRR)

Scheduling Algorithm

Behera [17] proposed a new algorithm that is based

on the idea of combining two schemes such as mean-

deviation time-quantum and increasing order burst time is

executed in RR algorithm.

Time Quantum Based Improved Scheduling

Algorithm (TQBISA)

Kishore and Goyal [18] designed an algorithm that is

integration of shortest job first (SJF) and round robin (RR)

algorithm.

 AN Algorithm

Noon et al [19] proposed an algorithm named as AN

algorithm, to overcome the limitation of round robin

algorithm. It is based on the procedure that provides

VARIANTS OF ROUND ROBIN
ALGORITHM

pISSN: 2523-5729; eISSN: 2523-5739 JICTRA 2018 23

solution to eliminate the flaws of round robin due to the

usage of static time quantum. In it the operating system

finds out the optimal value of time quantum according to

the burst time of each waiting process that is found in the

ready queue. The performance rate of AN algorithm is

good as compare to existing round robin algorithm but not

very good as compare to NK algorithm [20].

NK Algorithm

Kundargi and Bandekar [20] proposed an algorithm

named as NK Algorithm in order to improvise existing

round robin algorithm. In it the time quantum is computed

dynamically by choosing the burst time depending on the

set of available processes. The idea of this algorithm is

that in the first step time slice value is equivalent to burst

time of the arrived process. If at the same time many

processes arrived then time slice is initialized by

computing the average burst time. In this condition each

process is organized in the ready queue and the process

scheduling proceeds on the basis of First-Come First -

Serve. The NK algorithm is better than AN [19] algorithm

due to better time quantum adjustment. This algorithm

provides better results of turnaround time, response time

and minimum waiting time as compared to RR and AN

algorithm.

IRR Scheduling

Nayak et al [21] proposed improvement to the

performance of round robin by using dynamic time

quantum. In this improvement median of burst time of the

processes is calculated. Average number of context

switches is better. The algorithm provided state of the art

performance in case of average turnaround time and

average waiting time.

CPU utilization by providing priority to processes

with short burst time

Mythili et al [22] tried to improve CPU utilization by

providing priority to processes with short burst time.

Process is allowed to execute and does not have to wait

for next burst time if the burst time is less than 2X of the

time quantum but more than 1X of the time quantum.

CMRR

Reddy et al [23] proposed an improvement to existing

round robin by calculating the mean of the given

processes namely check mean with round robin (CMRR).

The proposed technique decreases the context switch

which reduces the average waiting time and average

turnaround time as compared to the existing IRR

technique [21].

The proposed randomized dynamic quantum (RDQ)

scheduling algorithm is based on the idea of arranging

incoming processes in ascending order according to burst

time in the ready queue. The RDQ algorithm utilizes

dynamic time quantum to allocate all processes to the

CPU one by one for the completion of their execution. The

core algorithm is well practiced algorithm, the round robin

algorithm. Simulation results show that proposed

algorithm has better performance rate as compared to

other CPU scheduling algorithms. The RDQ scheme is

explained as Algorithm 5 that consists of the following

steps:

1. Take out the set of processes and their burst time.

2. By using any sorting technique arrange the processes

in increasing order with respect to their relative burst

time and assign process numbers after sorting.

3. Assign minimum=middle process burst time and

maximum=last process burst time.

4. Generate time quantum randomly (between minimum

to maximum).

5. Execute processes from first to last one by one

according to time quantum.

Repeat step 4 and 5 until all the processes

successfully executed. Update process numbers after

successful execution of each process.

ALGORITHM 5 RDQ Scheduling

1 Create an array Rem_BT [] to keep track of remaining

burst time of processes. Rem_BT[i]=BT[i];

2. Create another array WT [] to store waiting times of

processes. Initialize this array as WT[i]=0;

3.
Sort all processes in ascending Order according to BT [i];

// assign process number after sorting

4. Initialize Min = BT [N/2];

5. Initialize Max = BT [N];

6. Initialize time: t = 0;

7. While all processes are not done {

QtmT= Random # greater than Min and less than Max

 For each process i do following {

 If Rem_BT [i] >QtmT

 t = t + QtmT

 Rem_BT[i] = Rem_BT[i] - QtmT;

PROPOSED CPU SCHEDULING
ALGORITHEM

pISSN: 2523-5729; eISSN: 2523-5739 JICTRA 2018 24

 Else // Last cycle for this process

 t = t + Rem_ BT[i];

 WT[i]= t - BT[i];
 Rem_BT[i] = 0; // This process is
over

Decrement N;}} // update remaining process
numbers

8: Compute turnaround time: TAT [i] = WT[i] + BT[i];

RDQ Working: An Example

In this section, we explain the proposed scheme

using an example. Consider the set of processes P1-P5

with their relative burst time where arrival time is zero.

Sorting is applied on them according to their burst time.

The passes are designed to generate the time quantum

randomly and then execute processes from first to last

one by one according to their time quantum.

Process Name P1 P2 P3 P4 P5

Burst Time 10 29 3 7 12

Sorting:

Process Name P3 P4 P1 P5 P2

Burst Time 3 7 10 12 29

First Pass

1. Generate time quantum randomly (e.g.

quantum=11)

2. Execute process from first to last one by one

according to time quantum

Sorting:

Process Name P5 P2

Burst Time 1 18

Second Pass

1. Generate time quantum randomly (e.g.

quantum=14)

2. Execute process from first to last one by one

according to time quantum

Process Name P5 P2

Burst Time 1-1 18-14

Sorting:

Process Name P2

Burst Time 4

Third Pass

1. Generate time quantum randomly (e.g.

quantum=20)

2. Execute process from first to last one by one

according to time quantum

Process Name P2

Burst Time 4-4

Finally the last process is finished its execution. The

Gantt chart representation of RDQ algorithm is given

below:

P3 P4 P1 P5 P2 P5 P2 P2

3 7 10 11 11 1 14 4

To compare and contrast the performance of the

proposed RDQ CPU scheduling algorithm, a scheduling

algorithms simulator was developed and used to check

the performance of the proposed methodology. In this

section the results and details along with observations are

presented.

Results

New proposed RDQ CPU scheduling algorithms is

compared with FCFS, SJF, RR and NK CPU scheduling

algorithms. For each comparison, different numbers of

processes along with their burst time are taken and then

they are scheduled. The numbers of processes in each

list were 10, 50, 100, 150, 200, 300, 400 and 500.

Figure 1 and Figure 2 is the graphical representation

of cumulative comparison of average waiting time and

average turnaround time of proposed RDQ algorithm with

FCFS, SJF, RR and NK scheduling algorithms. Using

these analysis results, it can be easily concluded that

RDQ algorithm shows marked improvement as compared

to FCFS, RR and NK Algorithm.

Figure 1. Cumulative comparison of average waiting time

of scheduling algorithm

Process Name P3 P4 P1 P5 P2

Burst Time 3-3 7-7 10-10 12-11 29-11

EXPERIMENTAL ANALYSIS

pISSN: 2523-5729; eISSN: 2523-5739 JICTRA 2018 25

Performance analysis of RDQ

There are two major classes of performance criteria;

the one is user-oriented criteria while the other is system

oriented criteria. The parameters such as waiting time and

turnaround time belong to user-oriented criteria and the

CPU utilization belongs to system-oriented criteria.

Proposed scheduling algorithm has been

implemented using C# language and executed several

times using different process sets. The analysis of

performance parameters are discussed here.

 Waiting Time: It was analysed that newly designed

RDQ algorithm gives smaller value of average

waiting time as compare to other existing scheduling

algorithms.

 Turnaround Time: The proposed RDQ has minimum

values of average turnaround time.

 CPU Utilization: RDQ also maximizes the processor

utilization.

 Starvation: This problem is not present in RDQ

scheduling algorithm for the reason that it provides

equal time slice to every process for its execution.

Figure 2. Cumulative comparison of average turnaround

time of scheduling algorithm

 Be Fair: RDQ is suitable for time sharing systems as

it provides fair share of processor to every process.

 Context Switching: RDQ does not suffer much due to

overhead of context switching as compared to

existing round robin scheduling algorithm for the

reason that in the proposed scheduling algorithm, the

dynamic quantum is utilized for the completion of

processes execution.

The experimental results shown in the present

section are used to derive performance metrics of each

CPU scheduling algorithm presented in literature. The

performance detail of each algorithm is given in Table 2.

(Appendix-I)

The generated results in the preceding section clearly

represent the position and performance of the proposed

RDQ algorithm. Results show that FCFS algorithm is

simplest and easy to implement but having poor

performance, minimum estimated throughput, its related

average waiting time and average turnaround is also

maximum. FCFS also suffers from convoy effect. The SJF

algorithm is optimal because it gives minimum values of

average turnaround and average waiting time but still

have problem of starvation. The RR algorithm is pre-

emptive and appropriate for time sharing system. It uses

quantum value that is utilized to allocate the CPU to all

the incoming processes one by one. The main overhead

of RR algorithm arises due to static quantum size. It

degenerates to FCFS ones the quantum size is too large,

on the other hand if the quantum is too small than RR

faces out a problem of context switching time. The NK

algorithm is also a variant of RR algorithm with dynamic

quantum but still not shows too much efficiency. The

performance of newly proposed RDQ algorithm is close to

SJF but when RDQ is compared with other algorithms it

gives better performance by giving smallest values for

average waiting and average turnaround time. The RDQ

has removed the problems such as starvation, convoy

effect, and context switching at great extent. Performance

evaluation and analysis proves that RDQ is good

enhancement of round robin algorithm and secures good

position above other scheduling algorithms.

Summary and Future Discussion

 The main goal of operating system with

multiprogramming feature is to share the system

resources fairly between several users and jobs. This

multiprogramming system mainly focuses on utilizing CPU

in such a way that the system performance is increased.

Scheduling is an important function of operating system

that makes possibility of efficient resource sharing. All the

computer resources are scheduled before use. CPU is

one of the important resources of the computer system so

DISCUSSION

pISSN: 2523-5729; eISSN: 2523-5739 JICTRA 2018 26

its scheduling is vital that help out in the understanding of

complex procedures and methods used to govern the

ways in which jobs are executed by the CPU. Various

algorithms are used to implement scheduling and every

algorithm has its own characteristics that differentiate it

from others.

Algorithms are evaluated by using various ways such

as deterministic modeling, queuing models, and

simulations. The most common techniques are

simulations and deterministic modeling because of their

provision of accurate results of the relevant scheduling

algorithms. The simulation involves programming a

specific model of the computer system whereas

deterministic modeling uses the selected algorithms and

workloads of a system to generate a number that

evaluates an efficiency of each algorithm for that specific

workload.

 In the present research work a novel CPU

scheduling algorithm named randomized dynamic

quantum is designed for time sharing systems and is

based on the idea of using dynamic quantum that change

in each pass of the algorithm. The RDQ algorithm sorts

the incoming processes in ascending order according to

their relative burst time. it utilizes the statically generated

time quantum to execute processes one by one. The

objective of designing the RDQ algorithm is to increase

the performance of the system and to overcome the

limitations of the existing algorithms. The proposed

algorithm achieves the desired goal.

Currently proposed RDQ CPU scheduling algorithm

has been designed to schedule process on uniprocessor

systems but in future it can be enhanced in order to

schedule processes in multiprocessor systems.

1. Z. Khan, M. Alam, R. A. Haidri. Effective Load Balance
Scheduling Schemes for Heterogeneous Distributed
System. International Journal of Electrical and Computer
Engineering. 2017, 7(5).

2. N. Srilatha, M. Sravani, Y. Divya. Optimal Round Robin
CPU Scheduling Algorithm Using Manhattan Distance.
International Journal of Electrical and Computer
Engineering. 2017, 7(6).

3. G. T. Hicham, E. A. Chaker, E. Lotfi. Comparative Study of
Neural Networks Algorithms for Cloud Computing CPU
Scheduling. International Journal of Electrical and
Computer Engineering. 2017, 7(6).

4. A. Kumar, B. Alam. Energy Harvesting Earliest Deadline
First Scheduling Algorithm For Increasing Lifetime of Real
Time Systems. International Journal of Electrical and
Computer Engineering. 2019, 9(1).

5. L. Dhanesh, P. Murugesan. A Novel Approach in
Scheduling of the Real-Time Tasks in Heterogeneous
Multicore Processor with Fuzzy Logic Technique for Micro-
grid Power Management. International Journal of Power
Electronics and Drive Systems, 2018, 9(1).

6. U. Saleem, M.Y. Javed. Simulation of CPU Scheduling
Algorithms. TENCON, 2000, pp. 562-567.

7. A. Silberschatz, P.B. Galvin and G. Gagne, Operating
System Concepts, 8th edition, 2009.

8. M. Milenkovic. Operating Systems Concepts and Design.
McGraw Hill, IBM Corporation, 1992.

9. A.S. Tanenbaum, and A.S. Woodhull. Operating system
design and implementation. 2nd Edition, 1997.

10. M.G. Nutt. Operating Systems. Addison Wesley, 2000.
11. R.J. Matarneh. Self-Adjustment Time Quantum in Round

Robin Algorithm Depending on Brust time of the Now
Running processes. American Journal of Applied
Sciences. 2009, 6(10), pp. 18311-1837.

12. A. Bashir, M.N. Doja and R. Biswas. Finding Time
Quantum of Round Robin Cpu Scheduling Algorithm Using
Fuzzy Logic. IEEE Internal Congference on Computer and
Electrical Engineering, 2008.

13. T. Helmy, and A. Dekdouk. Burst Round Robin as a
Proportional-Share Scheduling Algorithm. IEEE-GCC
Conference on towards Techno-industrial Innovations,
Bahrain, 2007, pp. 424-428.

14. R. Mohanty, H.S. Beheram, K. Patwari and M. Dash.
Design and Performance Evaluation of a new Proposed
Shortest Remaining Burst Round Robin (SRBRR)
Scheduling Algorithm. International Symposium on
Computer Engineering & Technology (ISCET), 17, 2010.

15. R. Mohanty, H.S. Beheram, K. Patwarim, M. Dash and
M.L. Prasanna. Priority Based Dynamic Round Robin
(PBDRR) Algorithm With Intelligent Time Slice for Real
Time Systems. International journal of Advance Computer
Science and applications, 2011, 2(2).

16. H.S. Behera. Weighted Mean Priority Based scheduling for
interactive systems. Journal of global Research in
computer science, 2011, 2(5).

17. H.S. Behera. Enhancing the CPU performance using a
modified mean-deviation round robin scheduling algorithm
for real time systems. Journal of global Research in
computer science, 2012, 3(3).

18. L. Kishor and D. Goyal. Time Quantum Based Improved
Scheduling Algorithms. International Journal of Advanced
Research in Computer science and Software Engineering,
2013, 3(4).

19. A. Noon, A. Kalakech and S. Kadry. A new Round Robin
based scheduling algorithm for operating system: Dynamic
quantum using the mean average. International Journal of
computer science, 2011, 8(3).

20. N. Kundargi and S. Bandekar. CPU Scheduling Algorithm
Using Dynamic Time Quantum for Batch Systems.

REFERENCES

pISSN: 2523-5729; eISSN: 2523-5739 JICTRA 2018 27

International journal of latest trends in engineering and
technology, 2013.

21. D. Nayak, S.K. Malla and D. Debadarshini. Improved
Round Robin Scheduling using Dynamic Time Quantum.
International journal of computer applications, 2012, 38(5).

22. N. Mythili,S. Pati, P. Korde and P. Dey. An advanced
approach to traditional round robin CPU scheduling
algorithm to prioritize processes with residual burst time

nearest to the specified time quantum. Int. Conf. Ser.:
Mater. Sci. Eng., 2017.

23. N. Reddy, S. Kumar and H. Santhi, P. Gayathri and N.
Jaisankar. A New CPU Scheduling Algorithm Using
Round-robin and Mean of the Processes, System and
Architecture. ISBN: 978-981-10-8532-1, 2018, pp. 231-
240.

Appendix-I

Table 2. Performance Metrics of Scheduling Algorithms

 FCFS SJF RR NK RDQ IRR

Decision Mode
non pre-
emptive

non pre-emptive pre-emptive Pre-emptive pre-emptive Pre-emptive

Turnaround
Time

High Less
less for short

processes
less for short

processes
slightly higher

than SJF
Less than RR

Waiting Time High Less
less for short

processes
less for short

processes
slightly higher

than SJF
Less than RR

CPU Utilization Less Less High High High High

Starvation No possible No No No No

Convoy Effect Possible No No No No No

Context
switching

No No Yes Yes
Yes Less than

RR
Less than RR

Time Sharing
System

No No Yes Yes Yes Yes

