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A B S T R A C T  

This paper presents the implementation of Periodic Boundary Conditions in Finite Difference Time Domain (FDTD) 

algorithm for the computation of periodic structures. Many electromagnetic problems such as in photonic crystals, 

scattering and radiation, the periodic scatterers are used. The periodicity of the scatterers is employed to simplify 

electromagnetic analysis by considering it for an infinite-array. Among other numerical techniques, FDTD provides 

efficient performance when the number of unknown (or problem size) increases together with covering wide band of 

frequencies in single simulation. An extensive number of simulated experiments are performed to demonstrate the 

efficient implementation of PBCs by using FDTD algorithm. 
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With the advancement of computer technology and 

rapid increase of computational resources, computational 

electromagnetic (CEM) is widely used by engineers and 

researchers. CEM is used to calculate the 

electromagnetic response of antennas, wave guiding, 

radiation and scattering phenomena, microwave and 

optical devices1, 2. The FDTD method is easy to formulate 

in comparison to different numerical techniques3. It is 

used in computer simulation models without complexity 

and provides suitable and unique solution for 

electromagnetic analysis of structures2. It can easily 

model various media including dielectrics, conductors, 

magnetic, lumped-elements, frequency-dependent, 

nonlinear, and anisotropic4-6. FDTD method is an 

attractive technique to solve broad range of microwave 

and optical problems7-10. These advantages of FDTD 

have made it to be used widely in many electromagnetic 

(EM) applications. Those applications comprise of the 

conventional EM problems, such as scattering and radar 

cross section (RCS) calculations, designs of microwave 

circuits, waveguides and fiber optics, and pattern 

characterizations of antenna11-14. The FDTD method also 
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has a strong capability to solve the scenarios, such as 

interaction of wave with human bodies and 

electromagnetic interference (EMI) in high speed 

electronics9,13. Periodic structures have been greatly 

found in the nature, which have captured the interest of 

both the artists and scientists. When electromagnetic 

waves interact with the periodic structures, an interesting 

phenomenon occurs6,12,15. Many electromagnetic 

problems such as in scattering and radiation, the periodic 

scatterers are present. The periodicity of the scatterers is 

used to simplify the problem by considering it for an 

infinite-array16. This analysis can also be done by using 

FDTD method, by taking the periodicity for an infinite-

array in one or two dimensions. In conventional EM 

problems such as in scattering and radiation, the fields 

propagate to infinity. The representation of the real 

electromagnetic assumption, computational domain must 

be theoretically extended to infinity14. Nevertheless, the 

computational domain should be reduced to a finite size 

because of the computational machines memory 

limitation17-21. This can be implemented by using proper 

boundary condition at the boundary of the computational 

domain for infinite extension of the simulation and for 

eliminating reflected wave. Different absorbing boundary 

conditions have been developed for providing reflection 

free truncation17. One of these techniques is the 

Convolutional Perfectly Matched Layer (CPML), which 

has a lot of advantages such as it is highly absorptive for 

evanescent waves and provides significant memory 

saving22-26. Periodic boundary conditions (PBCs) are 

implemented for the computation of infinite structure with 

one or two dimensional periodicity15. For example, 

Frequency Selective Surfaces (FSS), photonic bandgap, 

corrugated waveguides, and double negative materials 

have periodic structures5,11,13. An intimate antenna array 

is also considered as a periodic structure. Different 

techniques have been proposed for using PBCs. These 

can be classified into Direct Field Methods and Field 

Transformation Methods9. Field Transformation Methods 

use field transformation technique to eliminate the need of 

time advanced data, while, Direct Field Methods use 

directly Maxwell’s equations with PBCs. Floquet theory 

which is based on latter method is the foundation for 

developing PBCs5,11,15,17.  

In this paper, the PBC is implemented by using FDTD 

method. Section 1, provides the brief introduction of PBCs 

with its applications. Section 2 describes the FDTD 

method in detail, starting with Yee’s cell1 and updating 

scheme for PBCs. Section 3 provides implementation of 

boundary conditions for two-dimensional computational 

domain. Section 4 demonstrates results and discusses 

those results. Finally section 5 concludes the 

demonstrated research work.    

 

 

The PBCs are implemented by using FDTD 

algorithm. The Yee’s discretization technique is used to 

discretize differential form of Maxwell’s equations1. In the 

following sub-section, the Yee’s technique is discussed in 

detail for the computation and updating of the electric and 

magnetic field components of Maxwell’s equations.  

Yee’s cell and updating scheme 

In general, there are four Maxwell’s equations, 

among these equations only two equations are required 

for the implementation of FDTD method. The differential 

form of the two Maxwell’s equations27, required for FDTD 

algorithm is given as, 

𝛁 × 𝑬(𝑹, 𝑡) = −
𝜕

𝜕𝑡
𝑩(𝑹, 𝑡) − 𝑱𝒎(𝑹, 𝑡),     (1) 

𝛁 × 𝑯(𝑹, 𝑡) =
𝜕

𝜕𝑡
𝑫(𝑹, 𝑡) + 𝑱𝒆(𝑹, 𝑡).        (2) 

Constitutive relations are used to supplement 

Maxwell’s equations and provide the material properties11. 

Constitutive equations for vacuum are:    

𝑫(𝑹, 𝑡) = 𝜖0𝑬(𝑹, 𝑡), 

𝑩(𝑹, 𝑡) = 𝜇0𝑯(𝑹, 𝑡), 

𝑱𝒆
𝑐𝑜𝑛(𝑹, 𝑡) = 𝜎𝑒𝑬(𝑹, 𝑡). 

The E(R,t) and H(R,t) are the three-dimensional 

space vectors, so equations (eq. (1) and eq. (2)) 

represents three equations of each. These six equations 

are discretized in space and time by using finite difference 

scheme. Yee1 has introduced a cubic lattice for the 

discretization of the computational space to solve 

differential form of Maxwell’s equations. For the spatial-

domain, magnetic (H) fields are discretized in middle of 

the cubic faces whereas electric (E) fields are sampled at 

the center of the edges8. By this way, each E component 

is encircled by H components, and each H component is 

encircled by E components. In the time-domain, electric 

and magnetic field components are computed at a half 

time step difference, such as magnetic field is sampled at 
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t=(nt+1)∆t11. Whereas, the electric field is sampled at 

t=(nt+1/2)∆t11. For a two-dimensional simulation, 

transverse magnetic (TM) mode or transverse electric 

(TE) mode can be selected8. TMy mode is selected in this 

work; which is composed of Ey, Hx, Hz components, as 

shown in Figure 1. 

 
Figure 1: Two-dimensional staggered grid system in the 2-

D TM case8,9. Red arrows show magnetic components, 

while white arrows show electric field components. 

Magnetic field components are along horizontal and 

vertical direction of the page, electric field components are 

normal to the page.   

Then, the updating equations for the 2-D TMy case 

leading to8,20,    

 

𝐻𝑥
(𝑛𝑥, 𝑛𝑧, 𝑛𝑡)

=  𝐻𝑥
(𝑛𝑥, 𝑛𝑧, 𝑛𝑡−1)

+

  
𝛥𝑡

𝜇0
[

𝐸𝑦
(𝑛𝑥, 𝑛𝑧+ 1

2⁄ , 𝑛𝑡− 1
2⁄ )

−𝐸𝑦
(𝑛𝑥, 𝑛𝑧− 1

2⁄ ,𝑛𝑡− 1
2⁄ )

∆𝑧
],                     (3) 

𝐻𝑧
(𝑛𝑥, 𝑛𝑧,𝑛𝑡)

=  𝐻𝑧
(𝑛𝑥, 𝑛𝑧,𝑛𝑡−1)

−

  
𝛥𝑡

𝜇0
[

𝐸𝑦
(𝑛𝑥+ 1

2⁄ , 𝑛𝑧,𝑛𝑡− 1
2⁄ )

−𝐸𝑦
(𝑛𝑥− 1

2⁄ , 𝑛𝑧,𝑛𝑡− 1
2⁄ )

∆𝑥
],                     (4) 

𝐸𝑦

(𝑛𝑥+ 1
2⁄ , 𝑛𝑧+ 1

2⁄ , 𝑛𝑡+ 1
2⁄ )

= 𝐸𝑦

(𝑛𝑥+ 1
2⁄ , 𝑛𝑧+ 1

2⁄ , 𝑛𝑡− 1
2⁄ )

−

 
𝛥𝑡

𝜖0
[

𝐻𝑥
(𝑛𝑥, 𝑛𝑧+1, 𝑛𝑡)

−𝐻𝑥
(𝑛𝑥, 𝑛𝑧, 𝑛𝑡)

∆𝑧
− 

𝐻𝑧
(𝑛𝑥+1, 𝑛𝑧,𝑛𝑡)

−𝐻𝑧
(𝑛𝑥, 𝑛𝑧,𝑛𝑡)

∆𝑥
]. (5) 

This time-stepping procedure is fully explicit; hence 

does not require any matrix inversion. This is the one of 

the advantages of FDTD method which makes it easy to 

implement4-6,18. To avoid instability (numerical) in FDTD 

method, time step size ∆t must be smaller than the 

specific limit which is determined by the lattice space 

increments ∆x, ∆y, and ∆z. In FD method, a minimum 

time of ∆t= ∆x/c0 is required to propagate at a distance of 

one cell9,20. In a two-dimensional simulation, the 

propagation is allowed in the diagonal direction, hence 

the minimum time of ∆t= ∆x/√2 c0 is required. In general, 

the Courant condition is given as ∆t= ∆x/√(n.c), where c 

and n are the speed of light in vacuum and the dimension 

of simulation, respectively8. 

Boundary conditions 

Boundary condition for homogeneous case is given 

as12  

𝑬𝑡𝑎𝑛(𝑹, 𝑡) = 𝟎,                                                       (6) 

𝐵𝑛𝑜𝑟𝑚𝑎𝑙(𝑹, 𝑡) = 0.                                               (7) 

In order to solve partial differential equations 

numerically, the computational domain must be truncated 

without significant artifacts15. For a periodic structure 

analysis, where the periodic boundary condition is used, 

the computational domain is naturally truncated11,13,15. But 

sides of the computational domain, where PML is used, 

the computational domain can be truncated by PEC 

boundary condition given in eq. (6). 

Periodic boundary conditions (PBCs) 

Let’s consider, an infinite periodic arrangement of 2D 

structures having period p along the x-direction (Figure 2). 

Hence, only Ey, Hx, Hz fields are present while other field 

component become zero. Because of the symmetry, only 

the fields in single unit cell are required to compute. 

Dashed lines represent boundaries of unit cell (in Figure 

2). Solid black symbols denote fields that can be updated, 

whereas solid while symbols denote fields that cannot be 

updated. The PBCs can be used to compute field 

components that are not updated.  

 
Figure 2:  Infinite periodic structure with period ‘p’ along 

the horizontal (x) direction.  

 

The electromagnetic field for the PBCs can be with 

eq. (8)28 and eq. (9)28. 

𝑬(𝑥 = 0, 𝑧) =   𝑬(𝑥 = 𝑝, 𝑧)𝑒𝑗𝑘𝑥𝑝,                           (8) 

𝑯(𝑥 = 0, 𝑧) =  𝑯(𝑥 = 𝑝, 𝑧)𝑒𝑗𝑘𝑥𝑝,                            (9) 

Where, kx is propagation constant and p is the period of 

structure. kx can be determined by 

kx=k0.sinΘ=2πf√(ε0µ0).sinΘ6,13. 



pISSN: 2523-5729; eISSN: 2523-5739  JICTRA 2018  31 

In time domain, the fields become,  

𝑬(𝑥 = 0, 𝑧, 𝑡) =  𝑬(𝑥 = 𝑝, 𝑧, 𝑡 + 𝑝 sin 𝜃 /𝑐),              (10) 

𝑯(𝑥 = 0, 𝑧, 𝑡) =  𝑯(𝑥 = 𝑝, 𝑧, 𝑡 + 𝑝 sin 𝜃 /𝑐),              (11) 

When a plane wave is incident perpendicular to 

periodic structure, kx and Θ would be zero. Consequently, 

the above equations (eq. (10)28 and eq. (11)28) are 

reduced to following equations (eq. (12)28 and eq. (13)28).    

𝑬(𝑥 = 0, 𝑧, 𝑡) =  𝑬(𝑥 = 𝑝, 𝑧, 𝑡),                              (12) 

𝑯(𝑥 = 0, 𝑧, 𝑡) =  𝑯(𝑥 = 𝑝, 𝑧, 𝑡).                             (13) 

Above equations of PBCs can now be easily 

implemented in FDTD as follows (eq. (14) to (eq. (17)). 

The magnetic field will satisfy 

𝐻𝑧
(1, 𝑛𝑧,𝑛𝑡)

=  𝐻𝑧
(𝑁𝑥−1, 𝑛𝑧,𝑛𝑡)

,                              (14) 

and 

 𝐻𝑧
(2, 𝑛𝑧,𝑛𝑡)

=  𝐻𝑧
(𝑁𝑥, 𝑛𝑧,𝑛𝑡)

,                                (15) 

as well as the electric field will satisfy 

𝐸𝑦

(1− 1
2⁄ , 𝑛𝑧,𝑛𝑡)

=  𝐸𝑦

(𝑁𝑥− 1
2⁄ , 𝑛𝑧,𝑛𝑡)

,                   (16) 

and 

𝐸𝑦

(𝑁𝑥+  1 2⁄ , 𝑛𝑧,𝑛𝑡)
=  𝐸𝑦

(1+ 1
2⁄ , 𝑛𝑧,𝑛𝑡)

.                   (17) 

 

 

In order to implement PBC, consider FDTD model as 

shown in Figure 3, where a single unit cell surrounded by 

PBCs in horizontal directions (along x-direction) and 

absorbing boundary conditions (CPML) in vertical 

directions (along z-direction).  

                    Perfect Electric Conductor 

 

 

 

 

 

 

 

 

 

 

 

 

Perfect Electric Conductor (PEC) 
 

Figure 3: FDTD computational domain with PBC in x-

(horizontal) direction and absorbing boundary condition 

(i.e. CPML) in z- (vertical) direction 

The initial step is to build up the computational region 

together with geometry and sources, and all other 

parameters that will be required for FDTD computation. 

Field components are needed to be defined as arrays and 

initialized with zero values. At every time step, field 

components such as magnetic and electric fields are 

updated to time instant (n+1)∆t and (n+0.5)∆t, 

respectively. In order to make computational domain as a 

finite space, a periodic boundary condition is enforced in 

horizontal direction and CPML in vertical direction. 

Therefore, field in boundaries is treated in accordance 

with specific boundary conditions during iteration. FDTD 

iterations are continued until some stopping criteria are 

achieved. Updated equations for FDTD (i.e. for TMy case) 

can be determined by central difference formula as shown 

in Figure 1. In the interior domain, updated equations for 

2-D TMy case are implemented by using eq. (3) to eq. (5). 

PBC is implemented in left and right side (in x-

direction) of unit cell and absorbing boundary condition 

(CPML) along vertical direction as shown in Figure 3. 

Since periodic boundary condition is only employed in x-

direction, therefore Ey and Hz components at boundaries 

are needed to be determined. For a normal incidence, 

implementation of PBC in FDTD is simple, because no 

data for future time is required. Field components of one 

side of the unit cell are related to other side as shown in 

Figure 2. Updating equations of PBCs for magnetic field 

and electric fields are implemented by utilizing eq. (14) to 

eq. (17). 

 
 

In this work, PBCs are implemented in FDTD. The 

PBC is applied at left and right side boundary of the 

computational domain (i.e. problem space). Absorbing 

boundary condition is employed at top and bottom of the 

computational domain. Size of computational domain is 

260µm X 260µm. Wavelength (λ) of the normalized 

source is set to be λ=1.30µm. Because the absorption 

spectra shows very low absorption in window from 

λ=1.30µm - λ=1.55µm. In order to demonstrate efficient 

implementation of PBCs, three different experiments are 

performed (i) vacuum filled computational domain, (ii) 

homogeneous periodic scatterers are placed at the 

computational domain, and (iii) inhomogeneous periodic 

slabs are placed.      

IMPLEMENTATION 

RESULTS AND DISCUSSION  
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Vacuum Filled Computational Domain 

In first experiment, a point source is excited at the 

center of computational region filled with vacuum. The 

wavelength of source is λ=1.30µm. Figure 4 shows 

snapshots of Ey at different time steps in FDTD 

computational region, demonstrating the propagation of 

wave field. Figure 4(a) depicts initialization of the source 

at the center of computational domain. Source starts to 

march in time and space (see Figure 4(b)), as 

implemented in FDTD. Figure 4(c) depicts propagation of 

a point source over two-dimensional computational 

region. The effect of boundaries on the source is shown in 

Figure 4(d). When the source reaches near top and 

bottom boundaries of the computational domain, no wave 

is reflected from top and bottom boundaries (see Figure 

4(d)). It is due to the implementation of the CPML 

absorbing boundary conditions with FDTD. All waves 

coming to top and bottom are absorbed by the CPML. 

Waves that reached at left and right side crossed along 

boundaries and propagated through left and right unit 

cells, respectively. No reflection is observed from left and 

right boundary (Figure 4(d)), due to the efficient 

implementation of PBCs. The waves seen in Figure 4(d) 

comes from other unit cells (i.e. left and right unit cells) 

depicting periodicity.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4: Propagation of electric field when a point source 

(λ=1.30µm) is excited at the center of problem space. 

Bottom horizontal and left vertical scale show size of the 

computational domain (260µm X 260µm). The right vertical 

scale show normalized amplitude of a point source. (a) 

initialization of source at center; (b)-(d) snapshots of field 

propagation for different time steps. 

 

Effect of PBC in left boundary of computational 

domain is shown in Figure 5. Here, Figure 5(a) shows that 

the source is excited near left boundary of the 

computational domain. When the source is placed at left 

side, waves start to propagate and cross left boundary. 

Due to PBC at left side of the computational domain, 

waves crossing left boundary are observed in another cell 

which is in left of the chosen unit cell (i.e. computational 

domain). No reflection is observed from left boundary, as 

shown in Figure 5(b). The field that is shown (Figure 5(b)) 

to be near right boundary of computational domain is 

propagated from another cell which is beside the right 

boundary. This happened due to the PBC applied at right 

boundary. It is demonstrated that computational domain is 

a unit cell of an infinite periodic space. It means that there 

are infinite unit cells, and one unit cell for simulation is 

selected to save computational resources such as 
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memory and processing power. Therefore, sources that 

are excited at left boundary of each infinite unit cells are 

propagated through the boundary. Propagated field are 

then observed at right boundary of other unit cell which is 

besides that specific unit cell (see Figure 5(b)). Since, 

there is no reflection observed from boundary which 

demonstrates the efficient implementation of PBC at left 

boundary of computation domain.  

 
(a) 

 
(b) 

Figure 5:  Snapshots of electric field propagation at 

different time steps, when a source is excited in the left 

side of the problem space. Bottom horizontal and left 

vertical scale show size of the computational domain 

(260µm X 260µm). The right vertical scale show normalized 

amplitude of a point source. (a) initialization of source at 

left side; (b) electric field crosses left boundary. 

 

Similarly, effect of PBC applied at right boundary of 

computational domain is shown in Figure 6. Here, the 

source is excited near the right boundary of the 

computational domain as shown in Figure 6(a). When the 

source is placed at right side, waves start to propagate 

and cross right boundary. Due to PBC at right side of the 

computational domain, waves crossing right boundary 

would be observed in another cell which is in right of the 

chosen unit cell (i.e. computational domain). No reflection 

is observed from right boundary, as shown in Figure 6(b). 

The field that is shown (Figure 6(b)) to be near left 

boundary of computational domain is propagated from 

another cell which is beside the right boundary. This 

happened due to the PBC applied at right boundary, 

interpreting effect of infinite periodic structure. It is also 

observed that there is no reflection coming from right and 

left side of boundary. Since, there is no reflection 

observed from boundaries which demonstrates the 

efficient implementation of PBC at right and left boundary 

of computational domain.  

 
(a) 

 
(b) 

Figure 6:  Snapshots of field propagation at different time 

steps, when a source is excited in right side of the problem 

space. Bottom horizontal and left vertical scale represents 

area of the computational domain (260µm X 260µm). Right 

vertical scale show normalized amplitude of a point source. 

(a) initialization of source at right side; (b) electric field 

crosses right boundary. 

 

Homogeneous Periodic Material in Computational 

Domain   

In second experiment, PEC scatterers are placed in 

computational domain with a periodicity of a=13µm in 

horizontal direction. Computational domain is filled with 

vacuum. PEC scatterers are positioned in the center of a 

vertical plane, as shown in Figure 7. Blue dashed lines 

are scatterers (see Figure 7). Length of each PEC 
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scatterer is ten times of the source wavelength (λ= 

1.3µm) i.e. 13µm. A plane wave (i.e. line source) is 

excited above scatterers, as shown in Figure 7(a). After 

initialization of the plane wave, part of the wave 

propagates upward and part of the wave propagates 

downward, as shown in Figure 7(b). During the 

propagation of the wave, no reflection is observed from 

left and right boundary of computational domain. It is due 

to the efficient implementation of PBC on right and left 

boundary. Figure 7(c) shows upward propagating wave is 

absorbed by top boundary of the computational domain. It 

is demonstrated that there are no reflection coming from 

top boundary, due to implementation of the CPML 

absorbing boundary condition. The downward 

propagating wave hits the PEC scatterers (see Figure 

7(c)). Since the PEC scatterers are placed periodically, 

the wave encounters the periodic scatterers would be 

diffracted, as shown in Figure 7(d). The diffraction 

phenomenon depends on the size of the scatterer related 

to source wavelength. As the length of the scatterer and 

size of slit is 10 times the source wavelength, therefore, 

all the wave encountering scatterer and slit get diffracted. 

The complete diffraction pattern is shown in Figure 7(d). 

Furthermore it is also observed that there are no 

reflections coming from left, right, and top and bottom 

boundaries of computational domain. This demonstrates 

efficient utilization of PBC and CPML boundary 

conditions. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7:  Snapshots of propagation of electric field at 

different time steps, when a plane wave is excited above 

the PEC periodic scatterers in x- (horizontal) direction of 

the problem space. Bottom horizontal and left vertical 

scale show size of the computational domain (260µm X 

260µm). The right vertical scale show normalized 

amplitude of a point source. (a) initialization of line source 

at top of scatterer; (b) upward and downward propagating 

wave; (c) interaction of electric field with periodic PEC 

scatterer; (d) diffraction pattern of after interaction of wave 

and periodic PEC scatterer. 

 

Inhomogeneous Periodic Material in Computational 

Domain  

In third experiment, dielectric slabs are placed in 
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computational domain filled with vacuum, as shown in 

Figure 8. Thickness of slabs are d = 13µm, with a 

periodicity of a=13µm in horizontal direction. Thickness of 

slab and periodicity are 10 times of the source wavelength 

(λ= 1.30µm). Slabs are placed at the center of vertical 

axis of computational domain, shown in Figure 8(a). 

Relative permittivity of a dielectric slab is εr = 12, and 

refractive index of a dielectric slab is computed by n=√ εr 

=√12 = 3.46. Here also a plane wave source is excited 

above periodic slabs to observe the interaction of plane 

wave with inhomogeneous periodic structures, as shown 

in Figure 8(a). After excitation, the wave is started to 

propagate in upward and downward direction in the 

computational domain, as shown in Figure 8(b). Two 

effects are demonstrated in Figure 8(c): (i) the absorption 

of upward propagating wave and (ii) the interaction of 

downward propagating wave to inhomogeneous periodic 

structure. The absorption of upward propagating layer in 

top boundary is due to the implementation of the 

absorbing layers boundary condition i.e. CPML in top and 

bottom boundaries. Since periodic slab and slit sizes are 

relative to source wavelength, the downward propagating 

wave after encountering with periodic structures get 

diffracted. One another phenomenon can also be 

observed in Figure 8(c) that the wave interacting with 

inhomogeneous slabs are not completely reflected from 

the surface of the slab. But the part of the wave is 

penetrated into slab and the other part of the wave is 

reflected from the surface of the slab. Since the slab has 

higher dielectric property as compared to vacuum filled 

computational domain, the velocity of the wave would be 

less inside the slab. The waves get resonating inside the 

slab, as shown in Figure 8(c). The diffraction pattern and 

resonance effect is shown in Figure 8(d). This illustrates 

the application of photonic crystal, as the photonic 

crystals have periodic structures.  

 

(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8:  Snapshots of wave propagation at different time 

steps, when a plane wave is excited above the periodic 

dielectric slabs in x- direction (horizontal direction) of the 

problem space. Bottom horizontal and left vertical scale 

show size of the computational domain (260µm X 260µm). 

The right vertical scale show normalized amplitude of a 

point source. (a) initialization of line source at center; (b) 

upward and downward propagation of wave; (c) interaction 

of wave with periodic inhomogeneous dielectric slab; (d) 

diffraction and resonance pattern after wave interaction. 

 

 

The PBCs have been implemented by using FDTD 

algorithm. The 2-dimensional computational domain is 

CONCLUSION  
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described for the implementation of boundary conditions. 

The PBCs are implemented on the left and right side of 

the computational domain. The Floquet theory is used for 

the PBCs. Several simulation experiments have been 

performed to demonstrate the efficient working of PBCs. 

The experiments demonstrated that FDTD method can be 

employed in applications of periodic structures where 

periodicity is required. Some of the applications are 

photonic crystal, antenna arrays, and photonic filters.  
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