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A B S T R A C T  

Class imbalance problem is being manifold confronted by researchers due to increasing amount of complicated data. 

Common classification algorithms are impoverished to perform effectively on imbalanced datasets. Larger class cases 

typically outbalance smaller class cases in class imbalance learning. Common classification algorithms raise larger class 

performance owing to class imbalance in data and overall improvement in accuracy as their goal while lowering 

performance on smaller class. Furthermore, these algorithms deal false positive and false negative in an even way and 

regard equal cost of misclassifying cases. Meanwhile, different ensemble solutions have been proposed over the years 

for class imbalance learning but these approaches hamper the performance of larger class as emphasizing on the small 

class cases. The intuition of this overall degraded outcome would be the low diversity in ensemble solutions and 

overfitting or underfitting in data resampling techniques. To overcome these problems, we suggest a hybrid ensemble 

method by leveraging MultiBoost ensemble and Synthetic Minority Over-sampling TEchnique (SMOTE). Our suggested 

solution leverages the effectiveness of its elements. Therefore, it improves the outcome of the smaller class by 

reinforcing its space and limiting error in prediction. The proposed method shows improved performance as compare to 

numerous other algorithms and techniques in experiments. 
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Widening use of e-commerce and web activities 

accelerates the creation of enormous quantity of raw 

data. Classification is the key subfield of machine 

learning where unlabelled data is labelled, based on 

learning from past labelled data. The classifiers are 

trained to make accurate predictions based on 

matching past data [1-7]. The classifiers are provided 

with the training data where instances or cases are 

already labelled with the accurate labels. This entered 

data is utilized to build models that can be used to 
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classify unlabelled data. Decision trees [8-14], naive 

Bayes [15], support vector machines [16], ensemble 

learners [17-21], etc. have been successfully used to 

many categorization problems.  

Typically, classifiers try to achieve higher accuracy 

or try to reduce error rate as the evaluation benchmark 

[22]. Moreover, classifiers cope with type I and type II 

error in equal manner and consider equal cost of 

misclassification of cases for distinct classes. However, 

there is unequal misclassification costs in class 

imbalanced datasets where one class has lesser cases 

as compared to the other class. For example, it is much 

less likely to detect malign cell among normal cells in 

the body. The infrequent cases in particular class are 

usually more worthy and significant [5, 23-25]. The miss 

to predict accurate class could be an unenviable loss. 

 In imbalanced datasets, the class with fewer cases 

is referred as smaller or minority class and class with 

many cases is referred as larger or larger class [22]. 

The common classifiers with the aim of achieving 

maximum accuracy are generally inefficient on smaller 

class performance. This inadequacy in common 

classifiers is due to a little part from smaller class and 

some other errors. These classifiers achieve high 

prediction accuracy despite poor performance with 

smaller class identification [26-29]. This poor 

performance on smaller class is due to class 

imbalance; however, it has been noted that not only 

class imbalance but other issues also play important 

role in common classifiers underperformance on 

smaller class. The challenges include scarceness of 

data, class overlapping and small disjuncts, etc. [22, 

30-35]. These challenges along with imbalanced data 

representation limit the functionality of common 

classifiers on imbalanced datasets. Nevertheless, the 

ordinary classifiers attain higher accuracy performance 

by correctly categorizing all larger class cases and 

disregarding the skewed class cases. However, this 

result is not adequate and recognition of smaller class 

cases is much desirable than larger class cases. Class 

imbalance problem can be experienced in fraud 

detection [16], risk management [36, 37], health care 

[38, 39], software quality assurance [40-42], sentiment 

classification[43] and abstract classification [1], etc. 

The machine learning community has proposed various 

methods to address the requirements of class 

imbalance issue. These algorithms and techniques can 

be divided into two kinds of approaches. In first 

approach, data sampling techniques are used to 

equalize the class distributions. Data under sampling 

and data oversampling are two major kind of methods 

used to balance the class distributions. These methods 

are simple to apply but these methods are not without 

limitations. The oversampling methods may face over 

fitting and under sampling method may loss valuable 

information. On the other hand, various algorithms are 

tailored to cope with the Skewness problem in the 

second approach. The basic objective is to decrease 

the tendency towards the larger class. Additionally, cost 

sensitive algorithms are also used to address class 

imbalance problem. They choose high costs to skewed 

class cases with regard to the larger class cases. 

However, cost sensitive classifiers are domain 

dependent for cost estimation.  

Furthermore, ensemble learning approach are also 

used in classification. In this approach, multiple ordinary 

learning algorithms are united to create a strengthened 

learner. For example, AdaBoost [18] and Bagging [16] 

are two such methods that combine the multiple weak 

classifiers to form a strong classifier. To manage the 

class Skewness problem, ensemble methods are 

adapted in the past. These ensemble classifiers are 

coalesced with external resampling techniques to 

address the class imbalance problem. For example: 

BEV [18], SMOTEBoost [44], Asymmetric Bagging [45], 

RareBoost [15], RUSBoost [46], EasyEnsemble [47], 

IIVotes [48] and others [49, 50]. The data resampling 

methods try to balance the class distribution and 

ensemble methods improve the overall performance by 

reducing the error. It is also reported that ensemble 

learners combined with data resampling techniques 

increases the diversity and hence improve the 

accomplishment of the smaller class [51]. Furthermore, 

it is also noted that ensemble solutions decrease the 

functioning of the larger class while focusing on the 

smaller class. Consequently, an elaborate study is 

required to see the effects of ensembles with regard to 

the class imbalance problem. This effort can provide 

the insight of learning prospect of the ensembles and 

might motivate us to use it for better performance on 
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both smaller and larger class. It inspires new adapted 

ensemble algorithms for class imbalance learning that 

promotes diversity and overall improved performance. It 

is anticipated to address class imbalance problems with 

significant improvement. 

We are principally focused in the hybrid ensembles 

which integrate the data pre-processing methods with 

ensemble learning. The hybrid ensembles are effective 

in reducing bias and variance in the error and data 

preprocessing methods are effective to solve imbalance 

problem in data. In this paper, we design 

SMOTEMultiBoost technique for class imbalanced 

datasets. MultiBoost [52] ensemble is mixed with 

SMOTE [23] technique to enhance the results of 

smaller class, in addition to maintain high performance 

on larger class. MultiBoost is a technique that uses 

wagged subcommittees which consists of week 

boosted learners. This combination effectively reduces 

the error and hence enhance the outcome of the 

learner. While, SMOTE intelligently creates synthetic 

cases to extend the boundaries of scarce instance 

class and therefore promote the recall of smaller class 

cases. Our proposed method has the ability of its 

factors and so enhance the prediction ability of smaller 

class by reinforcing the smaller space and final results 

by limiting the error. Various benchmark datasets are 

utilized to appraise the functioning of the proposed 

class imbalanced learning algorithm. These datasets 

are popular binary class imbalance datasets used in 

class imbalance learning. These datasets are available 

at KEEL data repository. Evaluation on a range of 

benchmark datasets with different attributes provides a 

real scenario of the functioning of the proposed learning 

algorithms. The outcome of experiments show that it 

outperformed numerous other existing algorithms and 

techniques. The remainder of this paper is arranged as 

follows. Section 2 reports related work, and Section 3 

introduces the preliminaries. Section 4 outlines the 

SMOTEMultiBoost algorithm. Section 5 provides the 

details of our experiments, and the experimental 

outcomes are depicted in Section 6. In section 7, we 

conclude our paper. 

 

 

In this part, we review commonly used class 

imbalanced learning algorithms and techniques. 

Several approaches have been presented to handle the 

class imbalance problem. Broadly, class imbalance 

learning approaches can be split into external and 

internal techniques. For external techniques, class 

distribution is adapted to support smaller class by 

reducing the cases of the class having more cases or 

adding to the cases of the class having fewer cases. 

For internal techniques, the class bias is altered in 

support of smaller class by tailoring the existing 

algorithms. Additionally, innovative composite 

techniques were also presented that merge the external 

and internal techniques to approach the class 

imbalance problem. It has been exhibited that 

resampling techniques are useful while treating the 

class imbalance problem [53]. 

The fundamental resampling techniques are 

random oversampling and random undersampling [54]. 

Oversampling methods add the artificial cases to 

smaller class to equalize the class distribution. Random 

oversampling is the easy method to randomly add the 

cases to smaller class. Moreover, different 

sophisticated methods have been presented to 

decrease the negative outcome of primitive 

oversampling technique [55]. Synthetic oversampling is 

another approach that sensibly produces the smaller 

class cases. For instance, Synthetic Minority 

Oversampling Technique (SMOTE) [23] wisely 

produces new smaller class cases. SMOTE technique 

generates new artificial cases of smaller class among 

the under consideration instance and its k-nearest 

neighbours. However, SMOTE suffers from overfitting 

problem due to its artificial cases creation process. 

Furthermore, several variants of SMOTE have been 

introduced that use more adaptive approaches to 

improve the performance of SMOTE [4, 56], etc.  

Additionally, different data cleaning techniques 

have been proposed that are used with oversampling 

methods to overcome the overlapping problem. Tomek 

links [57] have least distanced nearest neighbours of 

larger and smaller class. Some techniques used data 

cleaning methods with resampling methods to improve 

the performance [54, 58]. Moreover, cluster-based 

sampling methods are applied to handle the class 

imbalance. They provided the adaptability that is not 

LITERATURE REVIEW 
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available in other sampling methods. For example, 

cluster-based oversampling algorithm uses the K-mean 

clustering approach to effectively solve the within-class 

and between-class problem [32]. 

The second type of resampling approach is known 

as under sampling. Random under sampling (RUS) is a 

primitive data under sampling technique to adjust the 

class distribution. In this approach cases from the larger 

class are randomly vanished to reach the desired 

balance. The main limitation of this technique is loss of 

valuable information [59]. The loss of valuable cases 

may result for the learning algorithm to ignore 

substantive concepts relating to the larger class. To 

reduce the information loss during the under sampling 

process, different advanced methods were presented to 

make more knowledgeable under sampling [60, 61]. 

Additionally, cost sensitive learning is utilized to 

address imbalance in data. This approach assigns 

various costs for classifying cases. Cost sensitive 

learning allows more cost to smaller class cases so that 

cost sensitive algorithms can focus on these cases to 

learn a useful class boundary [62-64]. However, cost 

sensitive learning techniques are not without limitations. 

The misclassification cost is based on expert judgment 

and furthermore, majority of classification algorithms 

are not adaptable to include cost into their learning 

procedure [65]. Furthermore, class imbalanced learning 

approaches can be crosswise split up with respect to 

ensemble learning. These algorithms present 

encouraging outcome in improving the performance of 

weak or fragile algorithms. Ensemble approach uses 

ordinary learners to form a strong and robust learner. 

Ensemble approach is divided into cost sensitive and 

resampling approach. The cost sensitive approach 

integrates internal and external approaches. These 

algorithms incorporate dissimilar costs of incorrectly 

classified cases into their learning mechanism. Different 

cost sensitive ensemble has been presented to confront 

the imbalance difficulty. The most prominent are 

AdaC1, AdaC2 and AdaC3 [66]. In these techniques, 

cost factor is introduced into the updating portion of 

AdaBoost ensemble. The AdaBoost.M1 algorithm 

iteratively updates the distribution function. By 

introducing the cost factor into the updating process 

these cost sensitive ensembles enhance the chances of 

sampling costly cases iteratively. This is due to the fact 

that these algorithms give more chances to the costly 

cases for more aimed approach to induction. This 

enhancement in the AdaBoost increases the bias of the 

algorithm towards the smaller class and it ensures the 

inclusion of more relevant data for better classification 

on smaller class. 

The data resampling ensembles can be further 

distinguished into three subclasses. The foremost 

subclass is boosting based. This subclass represents 

SMOTEBoost [44], RUSBoost [46], Asymmetric 

AdaBoost [45] etc. In this subclass of techniques, data 

resampling methods are unified with boosting based 

ensembles to treat the imbalance in the data. 

SMOTEBoost integrates SMOTE with the AdaBoost to 

make an ensemble technique that identifies the smaller 

class cases. In SMOTEBoost, SMOTE is fused with 

boosting procedure to handle the class imbalance by 

extending the smaller class. The new learner method 

thus enforces the border of the smaller class and raises 

learner’s diversity. Furthermore, RUSBoost is a type of 

SMOTEBoost but it incorporates random under 

sampling (RUS) rather than intelligent oversampling 

technique.  

Additionally, RUSBoost is easy method as 

compared to SMOTEBoost because random 

undersampling (RUS) is a computationally cheaper 

algorithm. Additionally, some techniques have been 

proposed that combine the Bagging ensemble [16] with 

the data resampling techniques to handle the class 

imbalance problem [67, 68]. Furthermore, Bagging 

Ensemble Variation (BEV) [18] also uses combination 

of undersampling and Bagging. However, in this 

approach the larger cases are split into separate 

subsets and all subsets are combined with smaller 

class cases individually and then, each learner is 

trained with one of those subsets.  

In the third subclass, hybrid ensembles are 

combined with data resampling techniques. In hybrid 

ensemble approach, two ensembles are combined to 

take advantage of its constituent e.g. EasyEnsemble 

and BalanceCascade [47], etc. EasyEnsemble forms an 

ensemble by combining separate subsets of larger 

class cases with the single whole set of smaller class 

cases. Then, on these separate subsets, AdaBoost 
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ensembles are trained. EasyEnsemble combines 

bagging and AdaBoost as its base learner. This 

algorithm is designed to overcome the drawback of 

random undersampling where valuable information is 

lost. However, in this algorithm, larger class cases are 

used in different subsets rather than simply discarding 

them. The main steps of EasyEnsemble are: A 

subsample is drawn from the training set which 

contains whole smaller class cases and a subset of 

larger class cases in equal quantity. Then these 

combined subsets called as bag is used by AdaBoost 

ensemble. Multiple AdaBoost base learners are trained 

on this bag of cases. At the end, these AdaBoost 

ensembles are aggregated to get the final hypothesis. 

On the other hand, BalanceCascade works in 

supervised fashion as compared to EasyEnsemble. In 

BalanceCascade the larger class cases are lay off in 

organized way. The basic functionality of this algorithm 

act in cascade way where larger class cases are thrown 

out from training set on right classification. Moreover, 

BalanceCascade proceeds as: In the first step, bags of 

cases are prepared from training set by drawing 

instance from larger class and all instance of smaller 

class. Then, a AdaBoost learner is trained on this new 

subset. Furthermore, cases from larger class are 

droped which are correctly classified. At the end, the 

ultimate hypothesis is formed by combining all the 

constituent learners as in EasyEnsemble. 

 

 

A. Preliminaries 

We use some common notations that are 

associated with the class imbalance problem to remove 

the ambiguity. We represent the base learning 

algorithm with L and represent a committee of learners 

known as the final hypothesis with H∗. We represent T 

subcommittees having size √ T, whereas H∗ = T √ T. 

Let, S is the features-class vector of size m. All pair (xi, 

yi) associates features xi ∈ X and class yi ∈ Y. Let a 

curser t is used that iterates through iterations T. 

Suppose, Ht be the constituent learner trained and 

Ht(xi) be the output of learner Ht, for instance, xi . 

Suppose, Dt(i) holds the value of the ith instance on 

repetition t. H∗ (x) is the hypothesis attained maximum 

votes from its constituents when implement to x. Ii 

represents the resulted index for subcommittees. We 

show the oversampling rate with N and nearest 

neighbors used in it with nn. 

B. Synthetic Minority Over-sampling 

TEchnique (SMOTE) 

 

It is an intelligent method to handle the skewed 

data. SMOTE makes fresh artificial smaller class cases 

by using the existing cases. These new artificially 

created synthetic cases are based on k-nearest 

neighbors. This procedure randomly forms artificial 

smaller class cases which determine details from nn-

nearest neighbors. It extrapolates the boundary for the 

smaller class and therefore reduce the over fitting 

problem in data.  

The SMOTE works as follow: For each instance of 

smaller class, find and take its nn-nearest neighbors 

(nn is specify by user). The fresh artificial instance is 

placed amongst the selected smaller class instance and 

nearest neighbors. Firstly, find the gap between the 

smaller class instance and its nn-nearest neighbors. 

Afterwards, normalize by multiplying it with any number 

between 0 and 1. Furthermore, combine fresh feature 

vector with the base feature vector, for continues 

features. On the other hand, select the cases with 

highest votes between smaller class feature vector and 

its neighbors, in the event of draw take any value and 

assign it to freshly created instance. SMOTE behaves 

differently for discrete and continues features to 

measure functions for closest neighbours. To measure 

the values for discrete characteristics, the Value 

Distance Metric is applied and the Euclidean Distance 

metric is applied to the continuous. 

C. MultiBoost Algorithm 

 

MultiBoost is a group strategy that strengthen the 

wagging with the AdaBoost. Bootstrapping sampling is 

used in bagging where diverse sets are made. 

However, in this bootstrapping sampling a few cases 

may duplicate. Continuous Poisson distribution is used 

in Wagging to assign weights to cases. Additionally, 

weak learning algorithms are gel together to constitute 

a robust learning algorithm. Additionally, AdaBoost 

combines less effective classifier to constitute a more 

effective classifier. At every cycle, a week algorithm is 

included and cases weights are recomputed in light of 

METHODOLOGY 
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their previous final hypothesis decisions. Formally, 

MultiBoost comprises of subcommittees and their 

magnitude √ T. It determines an objective 

subcommittee member list, Ii which permits early end of 

subcommittee because out of bound error. The final 

outcome is the aggregation of results of the 

subcommittees. Furthermore, the structure of 

MultiBoost is also suitable for distributed computing. 

D. SMOTEMultiBoost Algorithm 

 
It is important to argue about the undermentioned 

essential elements to adjust MultiBoost for learning 

from imbalance dataset. MultiBoosting lessens bias and 

variance in error in order to improve performance 

however it is insufficient for imbalanced datasets. To 

overcome the imbalance problem, the goal is 

disinclination of larger class cases by inclining the 

smaller occurrences while maintaining the 

achievements of larger class. We conflate the SMOTE 

within the Adboost to establish smaller class superiority 

and discover more extensive zones to enhance the 

outcome of smaller class. SMOTE is an oversampling 

strategy that uses resampling instead of reweighting 

which is contrary to the MultiBoost which uses 

reweighting. Furthermore, MultiBoost employ 

continuous Poisson distribution to adjust weights. We 

allot the values to fresh engineered cases induced by 

the SMOTE. SMOTEBoost beats contending 

techniques using boosting by reweighing [69]. Along 

these lines, regarding the possible margin of 

reweighting and to blend with the MultiBoost, we put the 

mean values of closest neighbors values to the fresh 

engineered occurrences. We utilized this technique 

since mean valuing do superior to early weighting 

methods [69]. The quantity of subcommittees framed 

and magnitudes are decided by individual. The 

proposed algorithm is presented in Algorithm 1. 

To conclude, new algorithm is a unification of 

MultiBoost with the oversampling technique, SMOTE. 

SMOTEMultiBoost requires a parameter R, 

representing subcommittees. Continuous Poisson 

distribution is employed by all subcommittees for 

adjusting example values. An AdaBoost component is 

required for every subcommittee having magnitude 

equivalent to √ R. For every cycle of AdaBoost, 

SMOTE method artificially produces the smaller cases, 

characterized by argument N. Average weights 

estimated from closest neighbors weights are attributed 

to freshly engineered cases for calibration. An imperfect 

hypothesis Hr is constituted and assessed. If current 

AdaBoost element prematurely ends due to the 

classification error too large or too small then the next 

subcommittee is framed with expanded magnitude to 

repay end of premature subcommittee. This procedure 

continues until the marked subcommittee size is 

attained. At last, each subcommittee is consolidated for 

final vote H∗. 

Algorithm 1:    SMOTEMultiBoost 

 Input: training dataset S, base learner B, amount of 
learning repetitions R, Vector Ii which define the 
number of repetitions for each sub-committee where z 
 1, SMOTE proportion N. 

Output: ensemble H* 

1 S' = S % set the weight distribution for all cases 
to 1. 

2 Set k = 1. 

3 For r = 1 to T { 

4  If  then 

5 
 % 

With continuous Poisson   
 distribution, random weights are drawn. 

6   Regularize % sum to 1. 

7   k++ 

8 

   % Build a temporary data 

set having distribution  by generating N 

synthetic cases from smaller class Cm using 
SMOTE 

9  Regularize     

10    % train a base learner  from 

dataset  

11    % 

calculate the error  

12  If  or  then 

13   Go to step 5. 

14     % calculate the weight of 
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15  For each , 

16 
 

 % update the distribution ,where 

is a normalization constant which alter   

to be a distribution 

17  }  

 Output the final classifier: 

 .  

E. Complexity Analysis.  

The computational complexity of 

SMOTEMultiBoost algorithm is as follows. The 

computational complexity of SMOTE is O(Cm.N.NNc) 

which is symbolized with O(Cs). Where Cm is the 

quantity of true class instance, N is the quantity of new 

engineered cases and NNc is price to discover closest 

neighbors. Assume that an imperfect classifier is 

symbolized by B. CART algorithm’s complexity is O 

(A.nlogn), where A, n represents quantity of attributes 

and cases, respectively. Assume, the count and size of 

subcommittees is represented as √ R. Hence, the 

computational complexity of proposed algorithm will be 

O(R.B.Cs). 

Dataset Size IP #attributes 

Hepatitis 155 3.84 19 

Glass-0-1-6-vs-2 192 10.29 9 

Glass1 214 1.82 9 

Ionosphere 351 1.79 34 

Ecoli-0-1-4-7-vs-2-
3-5-6 

336 10.59 7 

Wisconsin 683 1.86 9 

Pima 768 1.87 8 

Vehicle2 846 2.88 18 

Vehicle1 846 2.88 18 

Yeast1 1484 2.46 8 

Phoneme 5403 2.4 5 

Satimage 6435 9.28 36 

Mammography 11183 42 7 

 

F. Experimental Setup 

Thirteen binary class imbalanced datasets are 

used in investigations. We implemented various 

contending techniques including SMOTEMultiBoost on 

these datasets to look at and assess the viability of our 

proposed technique. 

G. Datasets 

We utilized binary class datasets in our trials with 

various proportions of the smaller and larger classes. 

We utilized openly accessible datasets from KEEL 

dataset archive [70]. Detailed insights of these datasets 

are depicted in Table 1. In the dataset Satimage, entire 

classes are collapsed into a binary imbalance dataset, 

except the smallest class. 

H.  Evaluation Metrics 

The aim of this paper was to analyze the efficiency 

of the proposed procedure with distinctive evaluation 

measures. Confusion matrix is commonly used for 

categorization. Accuracy is a well-known used 

categorization metric. Nonetheless, we cannot reliably 

calculate the execution by biased datasets of learning 

algorithms. Consequently, to start with, we utilized 

Geo Metric Mean (G-mean) in our analyses [71]. It is 

represented as: 

Gmean= 

                                                                               ……..(1) 

F-measure is also employed in tests [73]. F1- 

measure utilizes accuracy (p) and recall (r) to figure the 

score. F1-measure is computed as: 

                                         

                                                              ………. (2) 

Thirdly, We also used Q-statistic to measure the 

relationship between different class distributions and 

diversity [72]. 

 

Q =  …………………….. (3) 

At last, we exercise ROC curve in tests. Receiver 

operating characteristic (ROC) curve is depiction of 

classifier outcome utilizing false positive rate(fpr) and 

true positive rate(tpr) on x-axis and y-axis, respectively 

[33]. We also used AUC to compare the performance of 

classifiers using single scalar value which represents 

the area under the curve. 

I. Evaluation Algorithms 

Eight separate computing algorithms have been 
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used. The following include: MultiBoost, 

BalanceCascade and SMOTE, EasyEnsemble and 

RUSBoost (SMB), CART, SMOTEMultiBoost (SMB) 

and SMOTEBoost. In addition to pruning set to false, 

we used CART as a benchmark. As part of our 

inquiries, three distinct class dispersions of 35%, 50% 

and 65% are included. Five closest neighbors are 

utilized as a part of SMOTE. For MultiBoost and 

SMOTEMulti- Boost (SMB), the number of 

subcommittees and the magnitude of those 

subcommittees are set at three. Subsequently, it got to 

be distinctly add up to nine classifiers. Also, nine 

classifiers are utilized for RUSBoost, SMOTEBoost, 

EasyEnsemble and BalanceCascade, for reasonable 

examination. Tests are carried out utilizing WEKA. As 

the evaluation component, three fold-cross validations 

are used and each experiment is replicated 10 times. 

 

 

 

 In specific, the class imbalance learning 

techniques are designed for skewed datasets. Such 

techniques aim to boost the outcome of the smaller 

class while retaining the outcome of the larger class. 

The objective of the issue of class imbalance is to 

increase the efficiency of smaller class express by true 

positive rate (tpr). Similarly, by true negative rate, it is 

beneficial to retain high performance over greater class 

class express (tnr). Our new approach reflects on both 

the smaller and larger groups defined by the G-mean 

metric. 

In each dataset with G-mean, AUC and F1-

measures respectively, we display the execution of the 

classifiers using 65% small class distribution in Tables 

2, 3, and 4, respectively. By applying Friedman [65] on 

results test, we validate the statistical value of 

improvement. As a specific learner for experiments 

SMOTEMultiBoost is used. In contrast to other learners 

on G-mean, AUC and F1-measurement measures, 

SMOTEMultiBoost indicates substantial improvement 

(p< 0.0, 05) of the results. Performance improvements 

presented with asterisk sign in Tables 2, 3, 4.  asterisk 

sign in Tables 2, 3, 4.  

Table 2 

Result analysis of various methods with suggested 

SMOTEMultiBoost(SMB) on different datasets utilizing 

G-mean. In table, content with asterisk sign indicates 

improvement at (p < 0.05) Utilizing the Friedman test 

for SMOTEMultiBoost(SMB) and such techniques. 

 
Table 2 express G-mean quantities for all 

algorithms. It is showed that our proposed algorithm 

performs superior to all other contending algorithms. 

EasyEnsemble and BalanceCascade accomplishments 

are not significant as compared to sampling methods, 

particularly, oversampling. The degraded performance 

of these methods characterizes by uncommonness of 

smaller class cases in the datasets. Small class has 

few cases and by under sampling larger class makes its 

RESULTS AND DISCUSSION 



pISSN: 2523-5729; eISSN: 2523-5739  JICTRA 2020  16 

cases small too. Additionally, the performance of 

SMOTE and SMOTEBoost is better as compare with 

the under sampling methods.  

Likewise, AUC and F1-measure are expressed in 

Table 3, 4. Tables show that our proposed algorithm 

perform better as compare with the other algorithms on 

all datasets except Hepatitis and Mammography. 

Additionally, SMOTE and SMOTEBoost perform equally 

well having no significant difference.  

Table 3 

Result analysis of various methods with suggested 

SMOTEMultiBoost (SMB) on different datasets utilizing 

AUC. In table, content with asterisk sign indicates 

improvement at (p < 0.05) Utilizing the Friedman test 

for SMOTEMultiBoost (SMB) and such techniques. 

 

Table 4 

Result analysis of various methods with suggested 

SMOTEMultiBoost (SMB) on different datasets utilizing 

F1-measure. In table, content with asterisk sign 

indicates improvement at (p < 0.05) Utilizing the 

Friedman test for SMOTEMultiBoost (SMB) and such 

techniques. 

 
 

Likewise, AUC and F1-measure are delineated in 

Table 3, 4. It is evident from the tables that our 

algorithm perform better to every other method with the 

exception of Hepatitis and Mammography datasets. 

Moreover, SMOTE and SMOTEBoost are contending 

algorithms with equal performance on given 
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measurements.  

Moreover, Figure 1 portrays ROC curves created 

by various methods including our method on thirteen 

datasets. CART, EasyEnsemble and BalanceCascade 

showed weak performance over mammography 

dataset. Our proposed method perform superior as 

compare to other algorithms on all datasets. On each 

dataset, SMOTE, RUSBoost and SOTEBoost outcomes 

are better to BalanceCascade and EasyEnsemble. 

SMOTE and SMOTEBoost are contending methods 

taken after RUSBoost. Larger class showed degraded 

performance on resampling methods. Yet, the results of 

our method in ROC space as compare to other 

methods demonstrates that acquired power of wagging, 

boosting and SMOTE decrease bias and variance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Comparison of CART, MultiBoost, SMOTE, BalanceCascade, EasyEnsemble, RUSBoost and SMOTEBoost 

(SMB) for all datasets. SMOTEMultiBoost (SMB) dominates in ROC space. 
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Figure 2. Comparison of different Q-statistic values with respect to various class distributions (35%, 50% and 65%) 

on all data sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Comparison of different smaller class ratios (35%, 50% and 65%) on all data sets. The varying values of 

G-mean measure with respect to all methods including our SMOTEMultiBoost (SMB) are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Comparison of different smaller class ratios (35%, 50% and 65%) on all data sets. The varying values of 

AUC measure with respect to all methods including our SMOTEMultiBoost (SMB) are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Comparison of different smaller class ratios (35%, 50% and 65%) on all data sets. The varying values of 

F1 measure with respect to all methods including our SMOTEMultiBoost (SMB) are shown. 
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Experiments are conducted using various methods 

including our method on thirteen datasets with three 

distributions (35%, 50%, 65%). The Figure 2 shows Q-

statistic with respect to different class distributions for 

all datasets. It is apparent from the figure that there is 

no clear trend of Q-statistic with varying class 

distributions. Similarly, the Figures 3, 4, 5 show the 

measures used in our experiments with respect to 

different class distributions. All three distributions have 

no significant difference and they equally performed. 

Nevertheless, it is obvious that appropriate 

distribution is the characteristic of the specific dataset. 

An intriguing statement to say is that the values of all 

metrics of the RUSBoost are superior to EasyEnsemble 

and BalanceCascade. The main reason of this 

degraded performance of EasyEnsemble and Balance-

Cascade is due to loss of valuable information due to 

under sampling and duplication of smaller class cases 

create reduced diversity. 

 

 
 

Class imbalance problem is explored and 

developed effective and concrete method based on 

hybrid ensemble learning. Our method has quality to 

recognize the smaller class cases effectively while 

asserting the high performance for larger class cases. 

We presented a composite ensemble learning algorithm 

which adapt the MultiBoost ensemble for better overall 

performance and SMOTE oversampling technique for 

better smaller class performance. Our new hybrid 

algorithm not only reduce bias and variance in error by 

increasing the diversity but also enhance the results of 

smaller class, significantly. Experimental results on 

different commonly used datasets show that our 

proposed hybrid ensemble algorithm achieved better 

performance using G-mean, F1-measure, AUC and 

ROC space. We also conducted experiments with 

different rate of imbalance in datasets and found that all 

results are almost equal. Additionally, our algorithm 

also suitable for parallel execution. We try to implement 

the proposed algorithm for parallel execution for large 

datasets. In future work, we will additionally explore 

viability of our method and attempt to actualize the 

method for parallel execution for substantial datasets. 
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