

Journal of Information Communication Technologies and Robotic Applications

http://www.jictra.com.pk/index.php/jictra, pISSN: 2523-5729, eISSN: 2523-5739
JICTRA 2021 48

Open Access
Fu l l Leng th Ar t i c le

Automated Vulnerability Detection for Software using NLP

Techniques

Hafiza Iqra Shamim1, Hafiza Sana Shamim2, Asghar Ali Shah3

1, 2, 3 Department of Computer Science, Bahria University, Lahore Campus

A B S T R A C T

For information security, certain vulnerabilities can lead to major effects which later can cause consequences for

economic, social, and national security. It’s predicted that through the use of top-notch NLP technologies in the field of

vulnerability detection, a model can be created for the accomplishment of the automatic analysis which will help in the

detection of particular text files such as source code. An in-depth learning-based vulnerability detector is proposed that

pulls out some features through the help of an RNN composite neutral network. They employ a SARD and NVD dataset

of lots of open source roles, which will be tagged with results after three static analyzers that hint at possible activities.

Through the implementation of this data set, a fast and accessible detection system will come into being with built-in

deep feature sign knowledge that will directly translate the source code. Based on our research, we found out that

through deep feature representation learning on source code the software vulnerabilities can be automatically

unrevealed. In this study, the model vulnerability detection is used as a natural language processing (NLP) problem

where source codes are handled as texts. Furthermore, advanced deep learning NLP models are there which offer

transfer learning on written English to address/look into automated software vulnerability detection. In short, we have

used different algorithms i-e, machine learning, and deep learning.

Keywords: NLP, RNN, Open-source, Software vulnerability

Author`s Contribution
1 Data analysis, interpretation, and
manuscript writing, Active participation in
data collection, 2 Conception, synthesis,
planning of research, 3. Interpretation and
discussion

Address of Correspondence
Hafiza Iqra Shamim
Email: iqrashamim1996@gmail.com

Article info.

Received: October 03. 2021
Accepted: December 26, 2021
Published: December 30, 2021

Cite this article: Shamim HI, Shamim HS, Shah AA. Automated Vulnerability detection for
software using NLP techniques. J. inf. commun. technol. robot. appl.2021; 12(2):48-57.

Funding Source: Nil
Conflict of Interest: Nil

Vulnerability detection was always most important in

the world of safety software. Computerized inspections

and weaknesses identification have been innovated and

changed to stream research centers with huge source

code. One of the most active studies acting weaknesses

is to use the absolute of the absolute most of the modern

innovation of NLP art, and achieve programmed surveys

and detect source code for specific text documents. This

page provides a variety of new records and achievements

and an old technical summary such as Codebert [1]. For

pretty an extended time, figuring out protection

weaknesses in the application earlier than they're taken

gain of has been a difficult errand. Conventional

ORIGINAL ARTICLE

INTRODUCTION

http://www.jictra.com.pk/index.php/jictra

Journal of Information Communication Technologies and Robotic Applications

http://www.jictra.com.pk/index.php/jictra, pISSN: 2523-5729, eISSN: 2523-5739
JICTRA 2021 49

strategies for code exams were introduced, however,

they're usually fruitless and wasteful.

In this study, the version programming shortcoming

disclosure as an NLP trouble with supply code treated as

textual content, and the utilization superior substantial

getting to know NLP fashions with circulate getting to

know on created English to deal with robotized

programming shortcoming area. The preprocessed NIST

NVD/SARD dataset then made a dataset of 100,000

information in the C application layout language via

way of means 123 styles of shortcomings for making

plans and testing. To the quantity monitoring down

protection deficiencies, the large assessments produce

first-rate results, with over 93% precision [2]. A huge part

of associated publications of motion depends on clearly

defined shortcoming viewpoints and paintings problem to

recommendations or code similarities. To decide this

trouble, multiple scholastics have encouraged that neural

institutions with unfastened element extraction limits be

used to moreover foster ID information. Regardless, there

are one-of-a-kind styles of neural institutions, and the

records preprocessing methodologies used will vastly

affect version execution [3]. "How properly nation of the

artwork DL-primarily based techniques act in a real

shortcoming gauge circumstance?" The ask on this audit.

Their display brings someplace close to over half, lots

incredibly [4].

Picking the proper neural affiliation and records

preprocessing method for particular trouble is a tricky

undertaking for creators and skilled professionals. To

decide this trouble, The analysts directed a large

exploration of programming imperfection acknowledgment

issues, differentiating the exhibit of maximum ordinary

neural institutions (i.e., Bi-LSTM and RVFL) via way of

means of maximum ordinary information preprocessing

approaches (i.e., vector depiction additionally software

program engineer strategies of symbolization), then

concocted numerous fascinating exam results. The

professionals determined that: 1) RVFL`s readiness pace

is in each case faster than Bilstm's, but Biestimate

LSTM's precision is better than Rvfl's; 2) making use of

doc2vec for vector portrayal can similarly broaden the

version's making plans pace and speculation restrict over

word2vec, and 3) staggered symbolization can help with

running at the exactness of neural affiliation fashions [5].

Computer programmers are regularly making use of

Natural Language Processing (NLP) approaches to

address mechanize the assessment of Software

Vulnerabilities (SVs) in mild portrayals in open

repositories [3]. The used AI to foster a massive extension

of paintings degree shortcoming revelation device the use

of the abundance of open-supply C and C++ code

available. The researchers accumulated a large dataset of

plenty of open supply works referred to as the use of

discoveries from 3 wonderful constant analyzers that

display expected efforts to enhance contemporary named

weak spot datasets [13]. This article discusses a

developing fashion in mechanized weak spot detection

and remedy methodologies and advancements. This

inquiry shows a mechanized weak spot differentiating

evidence method primarily based totally on parallel

intricacy research to save you a zero-day attack. Foster a

programmed restore improvement method by the use of

PLT/GOT desk extrade to reply to zero-day flaws [14].

This task aims to illustrate how keeping apart textual

content highlights from competencies in C supply code

and deconstructing them through the use of an AI

classifier can bring about a substantial discount in

difficulties [15].

In the world of programming security, vulnerability

discovery has constantly been the most introductory

responsibility. Robotized disquisition and identification of

sins has turned into an eclipse and inflow exploration

center as invention propels and despite colossal source

law. One of the most anticipated investigations in the field

of weakness discovery is the application of the absolute

most state of the art NLP advances to make models and

achieve the programmed examination and identification of

source law for specific textbook documents, for

illustration, source law. This runner gives a speedy figure

of different new records and advancements, like

CodeBERT, just as a rundown of further seasoned

inventions (6). Post-arrangement, security defects in

transportation systems may bring about unanticipated

contrivance breakdown, frame crashes, or malignant

abuse by wafers. It's pleasurable when these defects are

planted and amended beforehand before the item is

delivered. CWE is for Common Weakness Estimation,

LITERATURE REVIEW

http://www.jictra.com.pk/index.php/jictra

Journal of Information Communication Technologies and Robotic Applications

http://www.jictra.com.pk/index.php/jictra, pISSN: 2523-5729, eISSN: 2523-5739
JICTRA 2021 50

and it's the wording for portraying normal sins in C law.

The scientists present a profound literacy model for feting

presumably the most well-known kinds of safety sins in

source law in this study. To disentangle law weakness

areas of interest, also tone- consideration associations.

By taking advantage of law AST construction, our

methodology fosters an exact handle of law semantics

with far lower learnable variables (7). As of in the not-so-

distant history, there had been close to no assessment

into conveying the 6 studies of move sorting out some

way to the field of NLP. In any case, new developments

including getting ready and tweaking fashion are being

made (8). In (9), the makers present VulDeePecker, a

significant literacy-grounded failing ID structure.

VulDeePecker gathers tests by taking outlaw tools (i.e.,

law sections that live semantically connected to the fault)

after imperfect computer programmers and subsequently

changing over them into vector descriptions. In the

literacy calculation, the Long Short-Term Memory is

employed (LSTM). VulDeePecker outperforms the public

with the skill-failing disclosure styles to the extent of both

delicacy and acceptability, as shown by tests. (10) Has

made different AI models for distinguishing goofs in C/ C

law that could provoke security handovers. Recently, with

the grim advancement of programming development,

precipitously more programming has been made by

people. While people share in the solace brought by

programming, they're also undermined by programming

failings. It could be said that item failings are presumably

the most significant issue that compromises the

customary movement of programming. For programming

guests, the prompt and unusual plutocrat-related rigors

achieved by programming failings worldwide have

outperformed numerous bones. It's easily a fact that there

are colorful failings in utmost programming. There are

numerous kinds of programming failings, for case, CVE-

2015-8558 (11). Alongside an ever-evolving system for

effectively perceiving law failing, this model also can

pinpoint the law corridor that was declared vulnerable by

the model. Accordingly, a specialist may zero in indeed

more snappily on the unsafe law locales, which

transforms into the" sensible" part of the failing

acknowledgment. The recommended AI accomplishes an

F1- score of98.40 percent on definite CWEs since the

benchmarked NIST SARD dataset, which looks fine to the

top league (5). Our contrivance was taken a stab at law

from authentic programming packs also as the NIST

SATE IV standard dataset (13). One explanation is that

colorful item clones of a relative failing may live, making it

delicate to screen, in reality (e.g., different performances

of libraries and operations) (17).

Systematic review studies

In total, we found 15 relevant studies in the sources

we looked at, as shown in this table. Total studies were

classed as scalar articles, including one meta-analysis [5].

Ten of the papers looked at technology evaluation

concerns, while the other five looked at research trends.

Software Vulnerability Detection guidelines were

mentioned in all papers. As a result, the research directly

linked itself to Software Vulnerability Detection. In terms

of where SLRs are published, IEEE, ACM, and Google.

Table1: Systematic Review Studies

 ID Author Year Topic Area Article type Num. primary

studies R1 J. Wu [1] 2021 Software Vulnerability

Detection

Scholarly articles

107

R2 N. Ziems, S. Wu [2] 2021 Software Vulnerability

Detection

Scholarly articles

24

R3 G. Tang, L. Meng [3] 2020 Software Vulnerability

Detection

Scholarly articles

32

R4 G. Tang, L. Meng [4] 2020 Software Vulnerability

Detection

Scholarly articles

32

R5 A Tanwar, H Manikandan[5] 2021
Software Vulnerability

Detection

Scholarly articles

76

R6 J. Howard, S. Ruder [6] 2018 Text Classification Scholarly articles

10

R7 Z. Li, D. Zou [7] 2018 Software Vulnerability

Detection

Scholarly articles

49

R8 J. A. Harer, L. Y. Kim [8] 2018
Software Vulnerability

Detection

Scholarly articles

31

http://www.jictra.com.pk/index.php/jictra
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com.pk/citations?user=KKgKqr8AAAAJ&hl=en&oi=sra
https://scholar.google.com.pk/citations?user=KKgKqr8AAAAJ&hl=en&oi=sra
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart

Journal of Information Communication Technologies and Robotic Applications

http://www.jictra.com.pk/index.php/jictra, pISSN: 2523-5729, eISSN: 2523-5739
JICTRA 2021 51

R9 J Akram, P Luo [9] 2021
Software Vulnerability

Detection

Scholarly articles

34

R10 Le, B. Sabir [10] 2019 Software Vulnerability

Detection

Scholarly articles

56

R11 R. Russell, L. Kim [11] 2018 Software Vulnerability

Detection

Scholarly articles

24

R12 J. Jurn, T. Kim [12] 2018 Software Vulnerability

Detection

Scholarly articles

16

R13 B. Chernis and R. Verma [13] 2018
Software Vulnerability

Detection

Scholarly articles

22

R14 S. Chakraborty, R. Krishna [14] 2021 Matrics Scholarly articles

10

R15 Z. Li [15] 2016 Software Vulnerability

Detection

Scholarly articles

30

The hunt procedure and final composition selection

are depicted in Figure 1. There were 80 papers originally

planted, and 30 papers rejected the cause of duplication.

Of the 80 papers reviewed, 50 were planted to be

conceivably respectable for addition, while the remaining

15 were rejected grounded on the title and abstract. After

carrying full textbooks and applying eligibility criteria to the

remaining 24 papers.

Key words
 Vulnerability detection
 Software Vulnerability

RESEARCH METHODOLOGY

http://www.jictra.com.pk/index.php/jictra
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com.pk/scholar?q=Security+Vulnerability+Detection+Using+Deep+Learning+Natural+Language+Processing&hl=en&as_sdt=0&as_vis=1&oi=scholart

Journal of Information Communication Technologies and Robotic Applications

http://www.jictra.com.pk/index.php/jictra, pISSN: 2523-5729, eISSN: 2523-5739
JICTRA 2021 52

Search Sources

The present advanced assortments are stylish places

to search for books, magazines, and papers. Because of

Defined means and the huge number of papers regarding

this matter, we pick three motorized libraries for this

jotting check. Three distinctive motorized libraries were

employed to execute an examination

 ACM

 IEEE

 Google Scholar

 Web Science

Since there have been similar in numerous reports

near picture inscribing, we limited our jotting inspection to

papers led over the most recent four times â€” 2016 to

2019. We sifted through papers that were posted under

the software engineering subject during our examination

in the motorized library.

Inclusion Criteria

For the last five times, experimenters have been

looking at natural language issues. The effectiveness of

models has been extensively bettered due to recent

developments in artificial intelligence (AI). Still, the issues

are rightly satisfactory. Since machines cannot mimic

mortal minds or the way they interact, it will still be a

challenge. It's extremely delicate to keep up with the

growing quantum of knowledge on this content. It's

delicate to keep up with the current findings and results in

the world of image captioning. A rigorous Methodical

Literature Review (SLR) offers a summary of image

captioning developments over the last four times in this

composition. The paper's crucial end is to clarify the most

common strategies and difficulties of image captioning, as

well as to summarize the findings. During this analysis,

inconsistencies in the findings attained in image

captioning were discovered, and as a result, this paper

raises mindfulness of shy data collection. As a

consequence, it's critical to equate the issues of a

recently developed model with the most recent data, not

just with state-of-the-art approaches. For experimenters,

this SLR is a source of certain material. This SLR is a

depository of similar data for experimenters so that they

can compare results directly before reporting new

accomplishments in the field of image caption generation.

Exclusion Criteria

This systematic literature review (SLR) examines the

various deep learning frameworks for image captioning in

depth. To conduct the study, we combed through papers

from three scholarly libraries, applied inclusion and

exclusion criteria to all of them, and chose 12 primary

studies for a literature review. We collected the data and

processed it using a data extraction mechanism. We

collected the data and extensively analyzed it using data

extraction mechanisms

Quality Assessment Criteria
 Table2. Categories and grading to
access the quality of the selected study

Items Description Grads

A Title

0=inaccurate
1=possibly
accurate
2=clearly accurate

B Abstract

0=inaccurate
1=possibly
accurate
2=clearly accurate

C
Introduction
Background-objective,
experimental approach

0=inaccurate
1=possibly
accurate
2=clearly accurate

D
Introduction
Objective-primary and
secondary

0=inaccurate
1=possibly
accurate
2=clearly accurate

E
Methods
Nature of the review
permission

0=inaccurate
1=possibly
accurate
2=clearly accurate

F

Method
Study Design number
of the experimental
and control group

0=inaccurate
1=possibly
accurate
2=clearly accurate

G

Method
Experimental
procedure-precise
detail

0=inaccurate
1=possibly
accurate
2=clearly accurate

RESULT AND ANALYSIS

http://www.jictra.com.pk/index.php/jictra

Journal of Information Communication Technologies and Robotic Applications

http://www.jictra.com.pk/index.php/jictra, pISSN: 2523-5729, eISSN: 2523-5739
JICTRA 2021 53

Quality Assessment Results

Table3. Quality Assessment Results

References A B C D E F G Total

Literature review on vulnerability detection using NLP
technology, 2021[1]

2 1 1 2 1 0 2 9

Security Vulnerability Detection Using Deep Learning
Natural Language Processing, 2021[2]

1 0 2 0 1 1 0 6

A Comparative Study of Neural Network Techniques
for Automatic Software
Vulnerability Detection, 2020[3]

1 1 0 2 1 0 2 7

Multi-context Attention Fusion Neural Network for
Software Vulnerability
Identification, 2021[4]

2 1 1 2 0 1 1 8

Universal Language Model Fine-tuning for Text
Classification, 2018[5]

2 1 1 0 0 1 2 7

VulDeePecker: A Deep Learning-Based
System for Vulnerability Detection, 2018[6]

1 1 0 0 1 1 2 6

Automated software vulnerability detection with
machine learning, 2018[7]

2 2 1 1 0 1 2 9

SQVDT: A Scalable Quantitative Vulnerability
Detection Technique for
Source Code Security Assessment, 2021[8]

1 1 0 2 2 0 2 8

Automated Software Vulnerability
Assessment with Concept Drift, 2019[9]

2 0 2 2 1 0 0 7

Automated Vulnerability Detection in Source Code
Using Deep Representation Learning, 2018[10]

1 0 0 0 2 1 0 4

An Automated Vulnerability Detection and
Remediation Method for Software Security, 2018[11]

2 1 0 0 1 1 0 5

An Automated Vulnerability Detection and
Remediation Method for Software Security
Machine Learning Methods for Software
Vulnerability Detection, 2018[12]

1 2 1 1 0 0 0 5

Deep Learning based Vulnerability Detection: Are We
There Yet,” IEEE Transactions on Software
Engineering, 2021[13]

0 0 1 1 2 1 0 5

Proceedings of the 32nd Annual Conference on
Computer Security Applications, 2016[14]

0 1 1 0 1 0 0 3

 Heat Map

Table4. Quality Assessment Heat Map

References A B C D E F G Total

Literature review on vulnerability detection using
NLP technology, 2021[1]

2 1 1 2 1 0 2 9

Security Vulnerability Detection Using Deep
Learning Natural Language Processing, 2021[2]

1 0 2 0 1 1 0 6

A Comparative Study of Neural Network Techniques
for Automatic Software
Vulnerability Detection, 2020[3]

1 1 0 2 1 0 2 7

http://www.jictra.com.pk/index.php/jictra

Journal of Information Communication Technologies and Robotic Applications

http://www.jictra.com.pk/index.php/jictra, pISSN: 2523-5729, eISSN: 2523-5739
JICTRA 2021 54

Multi-context Attention Fusion Neural Network for
Software Vulnerability
Identification, 2021[4]

2 1 1 2 0 1 1 8

Universal Language Model Fine-tuning for Text

Classification, 2018[5]
2 1 1 0 0 1 2 7

VulDeePecker: A Deep Learning-Based

System for Vulnerability Detection, 2018[6]
1 1 0 0 1 1 2 6

Automated software vulnerability detection with

machine learning, 2018[7]
2 2 1 1 0 1 2 9

SQVDT: A Scalable Quantitative Vulnerability
Detection Technique for
Source Code Security Assessment, 2021[8]

1 1 0 2 2 0 2 8

Automated Software Vulnerability

Assessment with Concept Drift, 2019[9]
2 0 2 2 1 0 0 7

Automated Vulnerability Detection in Source Code

Using Deep Representation Learning, 2018[10]
1 0 0 0 2 1 0 4

An Automated Vulnerability Detection and

Remediation Method for Software Security, 2018[11]
2 1 0 0 1 1 0 5

An Automated Vulnerability Detection and
Remediation Method for Software Security
Machine Learning Methods for Software

Vulnerability Detection, 2018[12]

1 2 1 1 0 0 0 5

Deep Learning based Vulnerability Detection: Are

We There Yet,” IEEE Transactions on Software

Engineering, 2021[13]

0 0 1 1 2 1 0 5

Proceedings of the 32nd Annual Conference on

Computer Security Applications, 2016[14]
0 1 1 0 1 0 0 3

Forest Plot

Odds ratios (squares proportional to weights used in

meta-analysis); summary measure (centerline of the

diamond); associated confidence intervals (lateral tips of

the diamond); names of fictional studies on left; odds

ratios and confidence intervals on right; odds ratios

(squares proportional to weights used in meta-analysis);

odds ratios (squares proportional to weights used in meta-

analysis); odds ratios (squares proportional to weights

used in meta-analysis); odds ratios (squares proportional

a vertical line that is solid and has no effect.

Figure 2. Forest Plot

http://www.jictra.com.pk/index.php/jictra

Journal of Information Communication Technologies and Robotic Applications

http://www.jictra.com.pk/index.php/jictra, pISSN: 2523-5729, eISSN: 2523-5739
JICTRA 2021 55

Dataset

National Vulnerability Database (NVD) [16] and software

guarantee Reference Dataset (SCRD) [17] are two

appreciably used vulnerability statistics resources.

NVD: The national Vulnerability Database

(NVD) became established in 2000 by way of

American authorities as a repository for requirements-

based vulnerability control. This dataset is primarily based

on the not unusual vulnerabilities and Exposures (CVE)

listing and is fully synced with it. It commonly analyses

CVEs that have been published in the CVE Dictionary. As

a result, any CVE updates will appear in NVD right away.

SCRD: This dataset can deliver a listing of

recognized protection troubles to users and researchers.

more than one test instance from diverse assets, such as

production programs, artificial, and educational, are

included in the SARD collection. SARD packages are

broken up into three classes: packages, which don't have

any vulnerabilities, applications, which have flaws, and

applications, which have vulnerabilities and the

associated patch variations.

A dataset is a logically prepared series of statistics

this is generally connected to a certain frame of work. We

can use the SARD and NVD dataset inside the studying

segment by extracting code metrics from a massive

variety of source code files, some of which are prone and

some of which can be no longer. The dataset consists of

1,591 NVD open-source C/C++ packages and 14,000

SARD open-source C/C++ programs.

When it comes to time and budget, manually

detecting vulnerable code is very hard and costly. To

minimize the cost, developers started using automatic

vulnerabilities tools (AVP). Today, developers started

using deep learning techniques on AVP. All the

suggested perspectives are established on the technique

of feature extraction pressed by previous applications of

deep learning (automatic language processing) [25]. This

revolt is expedited by big code from open sources

projects to provide an amazing performance using a

different model of machine learning. In the context of the

data-driven paradigm, this paper enlightens the recent

analytic research on the cyber code of venomous and

common software using different concepts of similarity,

correlation, and collective indication [26].

This has inspired the researchers of different

communities such as cyber security to implement deep

learning techniques so that it can help in learning and

understanding vulnerable code patterns and semantics

indicates [27]. In the research, we used ML classifier

algorithms such as Linear Support classification, Random

Forest, and Naive Bayes Classifiers, and to check their

outcomes, we uses three different metrics (precision,

recall, and F1-score evaluation metrics) [28]. So far,

reports have been manually categorized using risk

specifiers, which has led to errors in human motivation

and scalability due to a lack of security experts [29].

The results of our mapping research can be used to

identify research opportunities in the areas of software

risk ratings and automated vulnerability remediation

technologies [30]. This research evaluated the uses of

deep neural network models, and traditional models like

random forest and found that learning with tree-based

models generated the best results [31]. Deep learning

approaches for anomaly-based network intrusion

detection are studied in which a comparison is made

between observed anomalies and traditional machine

learning techniques like the random forest, SVM and Ada

boosting. Other optimizers can be used to discover

weaknesses such as the arithmetic optimization approach

[32] and the Aquile optimizer [33]. Consequently,

educated highlights are more vivid in [34].In comparison

to existing comparative methodologies dispersed tactics,

the suggested strategy produced a positive result.

For abnormality identification altered in line with

Apache Spark in-memory processing stage, a fake brain

network-based solution is proposed in this research [35].

Closest neighbor, choice trees, and backing vector

machines are used to compare the suggested model

against three common AI algorithms. By building out

relations between units [36] and natural language [37]

processing recurrent neural networks (RNNs) can recall

irregular length succession of designs. We designed a

product-based location Framework that can execute both

source code and bytecode to overcome the lack of

DISCUSSION

http://www.jictra.com.pk/index.php/jictra

Journal of Information Communication Technologies and Robotic Applications

http://www.jictra.com.pk/index.php/jictra, pISSN: 2523-5729, eISSN: 2523-5739
JICTRA 2021 56

bytecode security. Finally, we direct basic studies toward

constructing a reliable weak data set, and a concise

examination is offered [38].

The article [39] examines Three Types of weakness

location strategies to more easily assess the presence of

profound component learning weakness recognition

innovation. To reduce the exploration of pointless

approaches, writing begins with the age and selection of

smart seedlings. The solution provided in this article is

NeuFuzz, Which employs brain organizations to extract

hidden vulnerability designs from a large number of

defenseless and clean program execution methods. Use

expectation model to determine if inconspicuous where is

vulnerable during online directed fluffing, and seed is set

apart as suggested by forecast outcome and then added

to the seed line. Finally, in the subsequent seed

determination cycle and seed transformation, weak seeds

will be targeted and given additional change energy [40].

On this Foundation, the writing uses the multi-head

pointer cute simultaneous arrangement, Positioning, and

repair allowing for fine-grained positioning of explicit

factors and completion of maintaining cycle [41]. Writing

provides the Deep Repair learning structure, which

incorporates repeated or rehashed codes in the program

and focuses on and converts assertion in the code library

to build program fix parts based on the rule of code

compatibility [42].

To build a relapse model rather than a classifier

model researchers used 3 entirely connected

backpropagation brain organizations. Furthermore the

Model Neural Network Regression approach (NNR) Text

and mathematical measures of code changes and feed

them into a brain network, with the outcome indicating the

likelihood that the code modification under test includes

problems [43]. In 2017 vulnerability in Apache Struts was

discovered resulting in the compromising of 143 million

buyers' financial information [44].

The proposed a profound mastering-based weakness

discovery calculation that concentrates on highlights using

an RNN composite brain agency. They utilize a SARD

and NVD dataset of masses of open source jobs so that it

will be categorized with consequences after three static

analyzers that clue to capacity exercises. using this

dataset, foster a brief and open weak point discovery

framework based totally on profound issue sign records

that straightforwardly decipher source code. Our

discoveries suggest that a profoundly detailed portrayal of

mastering supply code may be applied to discover

programming weaknesses. in this review, the version

programming weakness identification as a feature

language managing (NLP) trouble with supply code took

care of as texts, and make use of progressed profound

learning NLP models with flow learning on composed

English to deal with mechanized programming weakness

reputation. Diverse calculations might be analyzed (AI

and profound getting to know).

1. . Wu, “Literature review on vulnerability detection using NLP

technology,” arXiv.org, 23-Apr-2021. [Online]. Available:
https://arxiv.org/abs/2104.11230v1. [Accessed: 09-Nov-2021].

2. N. Ziems and S. Wu, “Security Vulnerability Detection Using
Deep Learning Natural Language Processing,” arXiv.org, 06-
May-2021. [Online]. Available:
https://arxiv.org/abs/2105.02388. [Accessed: 09-Nov-2021].

3. G. Tang, L. Meng, H. Wang, S. Ren, Q. Wang, L. Yang, and W.
Cao, “A Comparative Study of Neural Network Techniques for
Automatic Software Vulnerability Detection,” 2020 International
Symposium on Theoretical Aspects of Software Engineering
(TASE), 2020.

4. G. Tang, L. Meng, H. Wang, S. Ren, Q. Wang, L. Yang, and W.
Cao, “A Comparative Study of Neural Network Techniques for
Automatic Software Vulnerability Detection,” 2020 International
Symposium on Theoretical Aspects of Software Engineering
(TASE), 2020.

5. “Multi-context Attention Fusion Neural Network for Software
Vulnerability Identification” [Online]. Available:
https://arxiv.org/pdf/2104.09225. [Accessed: 12-Nov-2021].

6. J. Howard and S. Ruder, “Universal Language Model Fine-tuning
for Text Classification,” arXiv.org, 23-May-2018. [Online].
 Available: https://arxiv.org/abs/1801.06146. [Accessed: 12-
Nov-2021].

7. Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z.
 Deng, and Y. Zhong,

8. “VulDeePecker: A Deep Learning-Based System for
 Vulnerability Detection,” Proceedings 2018 Network and
Distributed System Security Symposium, 2018.

9. J. A. Harer, L. Y. Kim, R. L. Russell, O. Ozdemir, L. R. Kosta, A.
Rangamani, L. H. Hamilton, G. I. Centeno, J. R. Key, P. M.
Ellingwood, E. Antelman, A. Mackay, M. W. McConley, J. M.
Opper, P. Chin, and T. Lazovich, “Automated software
vulnerability detection with machine learning,” arXiv.org, 02-Aug-
2018. [Online]. Available: https://arxiv.org/abs/1803.04497.
[Accessed: 12-Nov-2021].

10. “SQVDT: A Scalable Quantitative Vulnerability Detection ...”
[Online].
Available:https://www.researchgate.net/publication/345973173_S
QVDT_A_Scalable_Q
uantitative_Vulnerability_Detection_Technique_for_Source_Code
_Security_Assessmen t. [Accessed: 12-Nov-2021]. [10] T. H. M.
Le, B. Sabir, and M. A. Babar, “Automate Software Vulnerability

REFERENCES

CONCLUSION

http://www.jictra.com.pk/index.php/jictra
https://arxiv.org/abs/2104.11230v1
https://arxiv.org/abs/2105.02388
https://arxiv.org/pdf/2104.09225
https://arxiv.org/abs/1801.06146
https://arxiv.org/abs/1803.04497

Journal of Information Communication Technologies and Robotic Applications

http://www.jictra.com.pk/index.php/jictra, pISSN: 2523-5729, eISSN: 2523-5739
JICTRA 2021 57

Assessment with Concept Drift,” 2019 IEEE/ACM16th
International Conference on Mining Software
Repositories (MSR), 2019.

11. R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O.
Ozdemir, P. Ellingwood, and M. Mcconley, “Automated
Vulnerability Detection in Source Code Using Deep
Representation Learning,” 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA),
2018.

12. J. Jurn, T. Kim, and H. Kim, “An Automated Vulnerability
Detection and Remediation Method for Software Security,”
Sustainability, vol. 10, no. 5, p. 1652, 2018.

13. B. Chernis and R. Verma, “Machine Learning Methods for
Software Vulnerability Detection,” Proceedings of the Fourth
ACM International Workshop on Security and Privacy Analytics,
2018.

14. S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep
Learning-based Vulnerability Detection: Are We There Yet,” IEEE
Transactions on Software Engineering, pp. 1–1, 2021.

15. Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “VulPecker,”
Proceedings of the 32nd Annual Conference on Computer
Security Applications, 2016.

16. (NVD2019), “National vulnerability database.” [Online].
 Available: https://nvd.nist.gov/

17. (SARD2019), “Software assurance reference dataset.” [Online].
Available: https://samate.nist.gov/SRD/index.php

18. T. Mikolov, M. Karafiát, L. Burget, J.Cernock`y, and S.
Khudanpur, “Recurrent neural network-based language model,”
in Eleventh Annual Conference of the International Speech
Communication Association, p. 1045.

19. “5 Natural Language Processing Techniques for Extracting ...”
[Online]. Available:https://blog.aureusanalytics.com/blog/5natural-
language-processing-techniques-forextracting-information.
[Accessed: 04-Jan2022].

20. “BERT (Language model),” Wikipedia, 10-Oct-2019.
 [Online]. Available:
https://en.wikipedia.org/wiki/BERT_(Langu age_model).
[Accessed: 04-Jan-2022].

21. ”Simple recurrent neural networks” Wikipedia, 08-July-2019.
[Online]. Available:https://keras.io/guides/working_with_rnns/

22. ”Long Short-Term Memory” Wikipedia, 07-July-2021 [Online].
Available:https://machinelearningmastery.com/gentleintroduction-
long-short-term-memorynetworks-experts/

23. ”Bidirectional recurrent neural networks” Wikipedia, 01-Dec-
2021

24. [Online]. Available: https://en.wikipedia.org/wiki/Bidirectional_r
HYPERLINK
"https://en.wikipedia.org/wiki/Bidirectional_recurrent_neural_netw
orks"ecurrent_neural_networks

25. ”Gated recurrent unit” Wikipedia, 24-Nov-2021 [Online].
Available:"https://en.wikipedia.org/wiki/Gated_recurrent_unit"nt_u
nit

26. Zagane M, Abdi M K, Alenezi M. Deep Learning for Software
Vulnerabilities Detection Using Code Metrics [J]. IEEE Access,
2020, 8: 74562-74570.

27. R. Coulter, Q.-L. Han, L. Pan, J. Zhang, and Y. Xiang. “ Code
Analysis for Intelligent Cyber Systems: A Data-Driven Approach.”
In: Information Sciences 524 (2020), pp. 46-58.

28. G. Lin, S. Wen, Q.-L. Han, J. Zhang, and Y. Xiang. “ Software
Vulnerability Detection Using Deep Neural Networks: A Survey.”
In: Proceedings of the IEEE (2020), pp. 1-24.

29. MITRE. Common Vulnerabilities and Exposures (CVE). URL:
https: //cve.mitre.org/ (visited on May 28, 2021).

30. Aota M, Kanehara H, Kubo M, Murata N, Sun B, Takahashi T
(2020) Automation of vulnerability classification from its
description using machine learning. 2020 IEEE Symposium on
Computers and Communications (ISCC), pp 1–7

31. Bhuiyan FA, Sharif MB, Rahman A (2021) Security bug report
usage for software vulnerability research: a systematic mapping
study. IEEE Access 9:28471–28495

32. Siewruk G, Mazurczyk W (2021) Context-aware software
vulnerability classification using machine learning. IEEE Access

33. Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH
(2021) The arithmetic optimization algorithm. Comput Methods
Appl Mech Eng 376:113609

34. Abualigah L, Yousri D, Abd Elaziz M, Ewees AA, Al-qaness MA,
Gandomi AH (2021) Aquila optimizer: a novel meta-heuristic
optimization algorithm. Comput Ind
Eng. https://doi.org/10.1016/j.cie.2021.107250

35. Dam HK, Tran T, Pham T, Ng SW, Grundy J, Ghose A (2021)
Automatic feature learning for predicting vulnerable software
components. IEEE Trans Softw Eng 47(1):67–
85. https://doi.org/10.1109/TSE.2018.2881961

36. Alnafessah A, Casale G (2020) Artificial neural networks based
techniques for anomaly detection in Apache Spark. Cluster
Comput. https://doi.org/10.1007/s10586-019-02998-y

37. Sherstinsky A (2020) Fundamentals of recurrent neural network
(rnn) and long short-term memory (lstm) network. Physica D
404:132306

38. W. Wang, Y. Li, X. Wang, J. Liu, X. Zhang, “Detecting Android
Malicious Apps and Categorizing Benign Apps with Ensemble of
Classifiers,”

39. Feist, J., Greico, G., Groce, A.: Slither: a static analysis
framework for smart contracts. Paper presented at the WETSEB
2019: 2nd international workshop on emerging trends in software
engineering for blockchain (2019)

40. X. Ban, S. Liu, C. Chen, and C. Chua, “A performance evaluation
of deep-learned features for software vulnerability
detection,” Concurrency and Computation: Practice and
Experience, vol. 31, no. 19, p. e5103, 2019.

41. Y. Wang, Z. Wu, Q. Wei et al., “NeuFuzz: efficient fuzzing with a
deep neural network,” IEEE Access, vol. 7, pp. 36340–36352,
2019.

42. M. Vasic, A. Kanade, P. Maniatis, et al., “Neural program repair
by jointly learning to localize and repair,”
2019, https://arxiv.org/abs/1904.01720.

43. M. White, M. Tufano, M. Martínez, M. Monperrus, and D.
Poshyvanyk, “Sorting and transforming program repair
ingredients via deep learning code similarities,” in Proceedings of
the 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pp. 479–490,
IEEE, Hangzhou, China, February 2019.

44. L. Qiao and Y. Wang, “Effort-aware and just-in-time defect
prediction with a neural network,” PLoS One, vol. 14, no. 2,
Article ID e0211359, 2019.

45. X. Chen et al., “Android HIV: A study of repackaging malware for
evading machine-learning detection,” IEEE Trans. Inf. Forensics
Security, vol. 15, pp. 987–1001, Jul. 2020.

http://www.jictra.com.pk/index.php/jictra
https://nvd.nist.gov/
https://samate.nist.gov/SRD/index.php
https://en.wikipedia.org/wiki/BERT_(Langu
https://machinelearningmastery.com/gentleintroduction-long-short-term-memorynetworks-experts/
https://machinelearningmastery.com/gentleintroduction-long-short-term-memorynetworks-experts/
https://en.wikipedia.org/wiki/Bidirectional_recurrent_neural_networks
https://en.wikipedia.org/wiki/Bidirectional_recurrent_neural_networks
https://en.wikipedia.org/wiki/Bidirectional_recurrent_neural_networks
https://en.wikipedia.org/wiki/Bidirectional_recurrent_neural_networks
%22https:/en.wikipedia.org/wiki/Gated_recurrent_unit%22nt_unit
%22https:/en.wikipedia.org/wiki/Gated_recurrent_unit%22nt_unit
https://bratssoft.slack.com/cve.mitre.org/
https://doi.org/10.1016/j.cie.2021.107250
https://doi.org/10.1109/TSE.2018.2881961
https://doi.org/10.1007/s10586-019-02998-y
https://arxiv.org/abs/1904.01720

